Utilizzare ListDocumentClassifiers con un o AWS SDK CLI - Esempi di codice dell'AWS SDK

Ci sono altri AWS SDK esempi disponibili nel repository AWS Doc SDK Examples GitHub .

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Utilizzare ListDocumentClassifiers con un o AWS SDK CLI

I seguenti esempi di codice mostrano come utilizzareListDocumentClassifiers.

Gli esempi di operazioni sono estratti di codice da programmi più grandi e devono essere eseguiti nel contesto. È possibile visualizzare questa operazione nel contesto nel seguente esempio di codice:

CLI
AWS CLI

Per un elenco di tutti i classificatori di documenti

L'list-document-classifiersesempio seguente elenca tutti i modelli di classificatori di documenti addestrati e in corso di formazione.

aws comprehend list-document-classifiers

Output:

{ "DocumentClassifierPropertiesList": [ { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" }, { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "LanguageCode": "en", "Status": "TRAINING", "SubmitTime": "2023-06-13T21:20:28.690000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" } ] }

Per ulteriori informazioni, consulta Creazione e gestione di modelli personalizzati nella Amazon Comprehend Developer Guide.

Python
SDKper Python (Boto3)
Nota

C'è di più su. GitHub Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS.

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def list(self): """ Lists custom classifiers for the current account. :return: The list of classifiers. """ try: response = self.comprehend_client.list_document_classifiers() classifiers = response["DocumentClassifierPropertiesList"] logger.info("Got %s classifiers.", len(classifiers)) except ClientError: logger.exception( "Couldn't get classifiers.", ) raise else: return classifiers