Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Per comprendere le misurazioni che vengono utilizzate per ottimizzare una trasformazione basata su machine learning, è necessario avere familiarità con la seguente terminologia:
- Vero positivo (True positive, TP)
-
Una corrispondenza nei dati correttamente individuata dalla trasformazione, denominata anche colpo a segno.
- Vero negativo (True negative , TN)
-
Una mancata corrispondenza nei dati correttamente esclusa dalla trasformazione.
- Falso positivo (False positive, FP)
-
Una mancata corrispondenza nei dati che la trasformazione ha erroneamente classificato come una corrispondenza, denominata anche falso allarme.
- Falso negativo (False negative, FN)
-
Una corrispondenza nei dati non rilevata dalla trasformazione, denominata anche colpo mancato.
Per ulteriori informazioni sulla terminologia utilizzata nel campo del machine learning, consultare la voce Matrice di confusione
Per ottimizzare le trasformazioni basate su machine learning, è possibile modificare il valore delle seguenti misurazioni nella sezione Advanced properties (Proprietà avanzate) della trasformazione.
-
Precision (Precisione) misura la capacità della trasformazione di individuare veri positivi sul numero totale di record che identifica come positivi (veri positivi e falsi positivi). Per ulteriori informazioni, consulta la voce Precisione e recupero
su Wikipedia. -
Recall (Recupero) misura la capacità della trasformazione di individuare i veri positivi rispetto al totale dei record che compongono i dati di origine. Per ulteriori informazioni, consulta la voce Precisione e recupero
su Wikipedia. -
Accuracy (Accuratezza) misura la capacità della trasformazione di individuare i veri positivi e i veri negativi. L'incremento dell'accuratezza implica maggiori risorse di elaborazione e costi superiori. Tuttavia permette di raggiungere anche un livello maggiore di recupero. Per ulteriori informazioni, consultare la voce Accuratezza e precisione
su Wikipedia. -
Cost (Costo) misura la quantità di risorse di elaborazione (e quindi di denaro) consumate per l'esecuzione della trasformazione.