Invoquez Amazon Titan Image sur Amazon Bedrock pour générer une image - Amazon Bedrock

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Invoquez Amazon Titan Image sur Amazon Bedrock pour générer une image

Les exemples de code suivants montrent comment invoquer Amazon Titan Image sur Amazon Bedrock pour générer une image.

Go
SDKpour Go V2
Note

Il y en a plus à ce sujet GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS.

Créez une image avec le générateur d'images Amazon Titan.

type TitanImageRequest struct { TaskType string `json:"taskType"` TextToImageParams TextToImageParams `json:"textToImageParams"` ImageGenerationConfig ImageGenerationConfig `json:"imageGenerationConfig"` } type TextToImageParams struct { Text string `json:"text"` } type ImageGenerationConfig struct { NumberOfImages int `json:"numberOfImages"` Quality string `json:"quality"` CfgScale float64 `json:"cfgScale"` Height int `json:"height"` Width int `json:"width"` Seed int64 `json:"seed"` } type TitanImageResponse struct { Images []string `json:"images"` } // Invokes the Titan Image model to create an image using the input provided // in the request body. func (wrapper InvokeModelWrapper) InvokeTitanImage(ctx context.Context, prompt string, seed int64) (string, error) { modelId := "amazon.titan-image-generator-v1" body, err := json.Marshal(TitanImageRequest{ TaskType: "TEXT_IMAGE", TextToImageParams: TextToImageParams{ Text: prompt, }, ImageGenerationConfig: ImageGenerationConfig{ NumberOfImages: 1, Quality: "standard", CfgScale: 8.0, Height: 512, Width: 512, Seed: seed, }, }) if err != nil { log.Fatal("failed to marshal", err) } output, err := wrapper.BedrockRuntimeClient.InvokeModel(ctx, &bedrockruntime.InvokeModelInput{ ModelId: aws.String(modelId), ContentType: aws.String("application/json"), Body: body, }) if err != nil { ProcessError(err, modelId) } var response TitanImageResponse if err := json.Unmarshal(output.Body, &response); err != nil { log.Fatal("failed to unmarshal", err) } base64ImageData := response.Images[0] return base64ImageData, nil }
  • Pour API plus de détails, voir InvokeModella section AWS SDK for Go APIRéférence.

Java
SDKpour Java 2.x
Note

Il y en a plus à ce sujet GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS.

Créez une image avec le générateur d'images Amazon Titan.

// Create an image with the Amazon Titan Image Generator. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import java.math.BigInteger; import java.security.SecureRandom; import static com.example.bedrockruntime.libs.ImageTools.displayImage; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Image G1. var modelId = "amazon.titan-image-generator-v1"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-image.html var nativeRequestTemplate = """ { "taskType": "TEXT_IMAGE", "textToImageParams": { "text": "{{prompt}}" }, "imageGenerationConfig": { "seed": {{seed}} } }"""; // Define the prompt for the image generation. var prompt = "A stylized picture of a cute old steampunk robot"; // Get a random 31-bit seed for the image generation (max. 2,147,483,647). var seed = new BigInteger(31, new SecureRandom()); // Embed the prompt and seed in the model's native request payload. var nativeRequest = nativeRequestTemplate .replace("{{prompt}}", prompt) .replace("{{seed}}", seed.toString()); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated image data from the model's response. var base64ImageData = new JSONPointer("/images/0").queryFrom(responseBody).toString(); return base64ImageData; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { System.out.println("Generating image. This may take a few seconds..."); String base64ImageData = invokeModel(); displayImage(base64ImageData); } }
  • Pour API plus de détails, voir InvokeModella section AWS SDK for Java 2.x APIRéférence.

PHP
SDK pour PHP
Note

Il y en a plus à ce sujet GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS.

Créez une image avec le générateur d'images Amazon Titan.

public function invokeTitanImage(string $prompt, int $seed) { # The different model providers have individual request and response formats. # For the format, ranges, and default values for Titan Image models refer to: # https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-image.html $base64_image_data = ""; try { $modelId = 'amazon.titan-image-generator-v1'; $request = json_encode([ 'taskType' => 'TEXT_IMAGE', 'textToImageParams' => [ 'text' => $prompt ], 'imageGenerationConfig' => [ 'numberOfImages' => 1, 'quality' => 'standard', 'cfgScale' => 8.0, 'height' => 512, 'width' => 512, 'seed' => $seed ] ]); $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => $request, 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $base64_image_data = $response_body->images[0]; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $base64_image_data; }
  • Pour API plus de détails, voir InvokeModella section AWS SDK for PHP APIRéférence.

Python
SDKpour Python (Boto3)
Note

Il y en a plus à ce sujet GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS.

Créez une image avec le générateur d'images Amazon Titan.

# Use the native inference API to create an image with Amazon Titan Image Generator import base64 import boto3 import json import os import random # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Titan Image Generator G1. model_id = "amazon.titan-image-generator-v1" # Define the image generation prompt for the model. prompt = "A stylized picture of a cute old steampunk robot." # Generate a random seed. seed = random.randint(0, 2147483647) # Format the request payload using the model's native structure. native_request = { "taskType": "TEXT_IMAGE", "textToImageParams": {"text": prompt}, "imageGenerationConfig": { "numberOfImages": 1, "quality": "standard", "cfgScale": 8.0, "height": 512, "width": 512, "seed": seed, }, } # Convert the native request to JSON. request = json.dumps(native_request) # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract the image data. base64_image_data = model_response["images"][0] # Save the generated image to a local folder. i, output_dir = 1, "output" if not os.path.exists(output_dir): os.makedirs(output_dir) while os.path.exists(os.path.join(output_dir, f"titan_{i}.png")): i += 1 image_data = base64.b64decode(base64_image_data) image_path = os.path.join(output_dir, f"titan_{i}.png") with open(image_path, "wb") as file: file.write(image_data) print(f"The generated image has been saved to {image_path}")
  • Pour API plus de détails, reportez-vous InvokeModelà la section AWS SDKrelative à la référence Python (Boto3). API

Pour obtenir la liste complète des guides AWS SDK de développement et des exemples de code, consultezUtiliser Amazon Bedrock avec un AWS SDK. Cette rubrique inclut également des informations sur la mise en route et des détails sur SDK les versions précédentes.