Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

Scala スクリプトの例 - ストリーミング ETL

フォーカスモード
Scala スクリプトの例 - ストリーミング ETL - AWS Glue

次のスクリプト例では、Amazon Kinesis Data Streams に接続し、Data Catalog のスキーマを使用してデータストリームを解析した上で、そのストリームを Amazon S3 にある静的データセットに結合します。結合された結果は Parquet 形式で Amazon S3 に出力されます。

// This script connects to an Amazon Kinesis stream, uses a schema from the data catalog to parse the stream, // joins the stream to a static dataset on Amazon S3, and outputs the joined results to Amazon S3 in parquet format. import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import java.util.Calendar import org.apache.spark.SparkContext import org.apache.spark.sql.Dataset import org.apache.spark.sql.Row import org.apache.spark.sql.SaveMode import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions.from_json import org.apache.spark.sql.streaming.Trigger import scala.collection.JavaConverters._ object streamJoiner { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) val sparkSession: SparkSession = glueContext.getSparkSession import sparkSession.implicits._ // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) val staticData = sparkSession.read // read() returns type DataFrameReader .format("csv") .option("header", "true") .load("s3://awsexamplebucket-streaming-demo2/inputs/productsStatic.csv") // load() returns a DataFrame val datasource0 = sparkSession.readStream // readstream() returns type DataStreamReader .format("kinesis") .option("streamName", "stream-join-demo") .option("endpointUrl", "https://kinesis.us-east-1.amazonaws.com") .option("startingPosition", "TRIM_HORIZON") .load // load() returns a DataFrame val selectfields1 = datasource0.select(from_json($"data".cast("string"), glueContext.getCatalogSchemaAsSparkSchema("stream-demos", "stream-join-demo2")) as "data").select("data.*") val datasink2 = selectfields1.writeStream.foreachBatch { (dataFrame: Dataset[Row], batchId: Long) => { //foreachBatch() returns type DataStreamWriter val joined = dataFrame.join(staticData, "product_id") val year: Int = Calendar.getInstance().get(Calendar.YEAR) val month :Int = Calendar.getInstance().get(Calendar.MONTH) + 1 val day: Int = Calendar.getInstance().get(Calendar.DATE) val hour: Int = Calendar.getInstance().get(Calendar.HOUR_OF_DAY) if (dataFrame.count() > 0) { joined.write // joined.write returns type DataFrameWriter .mode(SaveMode.Append) .format("parquet") .option("quote", " ") .save("s3://awsexamplebucket-streaming-demo2/output/" + "/year=" + "%04d".format(year) + "/month=" + "%02d".format(month) + "/day=" + "%02d".format(day) + "/hour=" + "%02d".format(hour) + "/") } } } // end foreachBatch() .trigger(Trigger.ProcessingTime("100 seconds")) .option("checkpointLocation", "s3://awsexamplebucket-streaming-demo2/checkpoint/") .start().awaitTermination() // start() returns type StreamingQuery Job.commit() } }
プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.