Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Verwenden von Auftragslesezeichen

Fokusmodus
Verwenden von Auftragslesezeichen - AWS Glue

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

AWS Glue für Spark verwendet Auftragslesezeichen, um bereits verarbeitete Daten nachzuverfolgen. Eine Übersicht über das Feature Auftragslesezeichen und was es unterstützt, finden Sie unter Verfolgen von verarbeiteten Daten mit Auftragslesezeichen. Wenn Sie einen AWS Glue-Auftrag mit Lesezeichen programmieren, haben Sie Zugriff auf eine Flexibilität, die bei visuellen Aufträgen nicht verfügbar ist.

  • Beim Lesen aus JDBC können Sie die Spalte(n) angeben, die in Ihrem AWS Glue-Skript als Lesezeichenschlüssel verwendet werden sollen.

  • Sie können auswählen, welches transformation_ctx bei jedem Methodenaufruf angewendet werden soll.

Rufen Sie immer job.init am Anfang des Skripts und job.commit am Ende des Skripts mit entsprechend konfigurierten Parametern auf. Diese beiden Funktionen initialisieren den Lesezeichen-Service und aktualisieren so die Statusänderung des Services. Lesezeichen funktionieren nicht, ohne sie anzurufen.

Lesezeichenschlüssel angeben

Bei JDBC-Workflows merkt sich das Lesezeichen, welche Zeilen Ihr Auftrag gelesen hat, indem es die Werte der Schlüsselfelder mit einem Wert aus dem Lesezeichen vergleicht. Dies ist für Amazon-S3-Workflows nicht erforderlich oder anwendbar. Beim Schreiben eines AWS Glue-Skripts ohne den visuellen Editor können Sie angeben, welche Spalte mit Lesezeichen verfolgt werden soll. Sie können auch mehrere Spalten festlegen. Bei der Angabe benutzerdefinierter Lesezeichenschlüssel sind Lücken in der Wertefolge zulässig.

Warnung

Wenn benutzerdefinierte Lesezeichenschlüssel verwendet werden, müssen diese jeweils streng monoton ansteigend oder abfallend sein. Wenn Sie zusätzliche Felder für einen zusammengesetzten Schlüssel auswählen, erfüllen Felder für Konzepte wie „Nebenversionen“ oder „Revisionsnummern“ dieses Kriterium nicht, da ihre Werte im gesamten Datensatz wiederverwendet werden.

Sie können jobBookmarkKeys und jobBookmarkKeysSortOrder auf folgende Weise angeben:

  • create_dynamic_frame.from_catalog – verwenden Sie additional_options.

  • create_dynamic_frame.from_options – verwenden Sie connection_options.

Transformationskontext

Viele der AWS Glue PySpark dynamischen Frame-Methoden enthalten einen optionalen Parameter mit dem Namen transformation_ctx, der eine eindeutige Kennung für die ETL-Operator-Instance ist. Der Parameter transformation_ctx wird verwendet, um Zustandsinformationen innerhalb eines Auftragslesezeichens für den gegebenen Operator zu identifizieren. Genauer gesagt nutzt AWS Glue den transformation_ctx, um den Schlüssel zum Lesezeichenstatus zu indizieren.

Warnung

transformation_ctx dient als Schlüssel, um den Lesezeichenstatus nach einer bestimmten Quelle in Ihrem Skript zu durchsuchen. Damit das Lesezeichen ordnungsgemäß funktioniert, sollten Sie stets die Konsistenz von Quelle und transformation_ctx wahren. Durch Ändern der Quelleigenschaft oder Umbenennen von transformation_ctx kann das vorherige Lesezeichen ungültig werden und die zeitstempelbasierte Filterung führt möglicherweise nicht zum richtigen Ergebnis.

Damit Auftragslesezeichen richtig funktionieren, aktivieren Sie den Parameter für Auftragslesezeichen und setzen Sie den Parameter transformation_ctx. Wenn Sie den transformation_ctx-Parameter nicht übergeben, sind keine Auftragslesezeichen für einen in der Methode verwendeten dynamischen Frame bzw. eine dort verwendete Tabelle aktiviert. Bei einem ETL-Auftrag beispielsweise, der zwei Amazon-S3-Quellen liest und verbindet, können Sie den transformation_ctx-Parameter auch nur an jene Methoden übergeben, die Sie für Lesezeichen aktivieren wollen. Wenn Sie das Auftragslesezeichen für einen Auftrag zurücksetzen, werden alle Transformationen, die mit dem Auftrag verbunden sind, unabhängig vom verwendeten transformation_ctx zurückgesetzt.

Weitere Informationen über die DynamicFrameReader-Klasse finden Sie unter DynamicFrameReader Klasse. Weitere Informationen zu PySpark Erweiterungen finden Sie unter AWS Referenz für PySpark Klebererweiterungen.

Beispiele

Im Folgenden finden Sie ein Beispiel für ein generiertes Skript für eine Amazon-S3-Datenquelle. Die Teile des Skripts, die für die Nutzung von Auftragslesezeichen erforderlich sind, werden kursiv dargestellt. Weitere Informationen zu diesen Elementen finden Sie in der GlueContext Klasse-API und in der DynamicFrameWriter Class-API.

# Sample Script import sys from awsglue.transforms import * from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from awsglue.context import GlueContext from awsglue.job import Job args = getResolvedOptions(sys.argv, ['JOB_NAME']) sc = SparkContext() glueContext = GlueContext(sc) spark = glueContext.spark_session job = Job(glueContext) job.init(args['JOB_NAME'], args) datasource0 = glueContext.create_dynamic_frame.from_catalog( database = "database", table_name = "relatedqueries_csv", transformation_ctx = "datasource0" ) applymapping1 = ApplyMapping.apply( frame = datasource0, mappings = [("col0", "string", "name", "string"), ("col1", "string", "number", "string")], transformation_ctx = "applymapping1" ) datasink2 = glueContext.write_dynamic_frame.from_options( frame = applymapping1, connection_type = "s3", connection_options = {"path": "s3://input_path"}, format = "json", transformation_ctx = "datasink2" ) job.commit()

Im Folgenden finden Sie ein Beispiel für ein generiertes Skript für eine JDBC-Quelle. Die Quelltabelle ist eine Mitarbeitertabelle mit der empno-Spalte als Primärschlüssel. Der Auftrag verwendet standardmäßig einen sequenziellen Primärschlüssel als Lesezeichenschlüssel, wenn kein Lesezeichenschlüssel angegeben ist. Da empno nicht notwendigerweise sequentiell ist, kann es Lücken in den Werten geben – es gilt nicht als Standardschlüssel für Lesezeichen. Daher wird das Skript explizit empno als Lesezeichenschlüssel bezeichnet. Dieser Teil des Codes ist kursiv dargestellt.

import sys from awsglue.transforms import * from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from awsglue.context import GlueContext from awsglue.job import Job args = getResolvedOptions(sys.argv, ['JOB_NAME']) sc = SparkContext() glueContext = GlueContext(sc) spark = glueContext.spark_session job = Job(glueContext) job.init(args['JOB_NAME'], args) datasource0 = glueContext.create_dynamic_frame.from_catalog( database = "hr", table_name = "emp", transformation_ctx = "datasource0", additional_options = {"jobBookmarkKeys":["empno"],"jobBookmarkKeysSortOrder":"asc"} ) applymapping1 = ApplyMapping.apply( frame = datasource0, mappings = [("ename", "string", "ename", "string"), ("hrly_rate", "decimal(38,0)", "hrly_rate", "decimal(38,0)"), ("comm", "decimal(7,2)", "comm", "decimal(7,2)"), ("hiredate", "timestamp", "hiredate", "timestamp"), ("empno", "decimal(5,0)", "empno", "decimal(5,0)"), ("mgr", "decimal(5,0)", "mgr", "decimal(5,0)"), ("photo", "string", "photo", "string"), ("job", "string", "job", "string"), ("deptno", "decimal(3,0)", "deptno", "decimal(3,0)"), ("ssn", "decimal(9,0)", "ssn", "decimal(9,0)"), ("sal", "decimal(7,2)", "sal", "decimal(7,2)")], transformation_ctx = "applymapping1" ) datasink2 = glueContext.write_dynamic_frame.from_options( frame = applymapping1, connection_type = "s3", connection_options = {"path": "s3://hr/employees"}, format = "csv", transformation_ctx = "datasink2" ) job.commit()
DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.