Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Schätzen der Qualität von Übereinstimmungen mithilfe von Match-Konfidenzwerten
Match-Konfidenzwerte liefern eine Schätzung der Qualität der von „FindMatches“ gefundenen Übereinstimmungen, um zwischen übereinstimmenden Datensätzen zu unterscheiden, in denen das Modell des maschinellen Lernens sehr zuversichtlich oder unsicher ist oder die es für unwahrscheinlich hält. Ein Match-Konfidenzwert liegt zwischen 0 und 1, wobei ein höherer Punktestand eine höhere Ähnlichkeit bedeutet. Durch die Untersuchung von Match-Konfidenzwerten können Sie zwischen Clustern von Übereinstimmungen unterscheiden, in denen das System sehr zuversichtlich ist (die Sie möglicherweise zusammenführen möchten), Clustern, bei denen das System unsicher ist (die Sie möglicherweise von einem Menschen überprüfen lassen wollen) und Clustern, die das System für unwahrscheinlich hält (die Sie möglicherweise ablehnen).
Möglicherweise möchten Sie Ihre Trainingsdaten in Situationen anpassen, in denen Sie einen hohen Match-Konfidenzwert sehen, aber feststellen, dass es keine Übereinstimmungen gibt, oder in denen Sie eine niedrige Punktzahl sehen, aber feststellen, dass es tatsächlich Übereinstimmungen gibt.
Konfidenzwerte sind besonders bei großen industriellen Datensätzen nützlich, bei denen es nicht möglich ist, jede FindMatch-Entscheidung zu überprüfen.
Match-Konfidenzwerte sind in AWS Glue Version 2.0 oder höher verfügbar.
Generieren von Match-Konfidenzwerten
Sie können Match-Konfidenzwerte generieren, indem Sie beim Aufrufen der FindMatches
- oder FindIncrementalMatches
-API den booleschen Wert von computeMatchConfidenceScores
auf „True“ setzen.
AWS Glue fügt der Ausgabe einen neuen column match_confidence_score
hinzu.
Beispiele für Match-Scoring
Betrachten Sie beispielsweise die folgenden übereinstimmenden Datensätze:
Ergebnis >= 0,9
Zusammenfassung der übereinstimmenden Datensätze:
primary_id | match_id | match_confidence_score 3281355037663 85899345947 0.9823658302132061 1546188247619 85899345947 0.9823658302132061
Details:
In diesem Beispiel sehen wir , dass zwei Datensätze sehr ähnlich sind und display_position
, primary_name
und street name
gemeinsam haben.
Ergebnis >= 0,8 und Ergebnis < 0,9
Zusammenfassung der übereinstimmenden Datensätze:
primary_id | match_id | match_confidence_score 309237680432 85899345928 0.8309852373674638 3590592666790 85899345928 0.8309852373674638 343597390617 85899345928 0.8309852373674638 249108124906 85899345928 0.8309852373674638 463856477937 85899345928 0.8309852373674638
Details:
In diesem Beispiel sehen wir, dass diese Datensätze primary_name
und country
gemeinsam haben.
Ergebnis >= 0,6 und Ergebnis < 0,7
Zusammenfassung der übereinstimmenden Datensätze:
primary_id | match_id | match_confidence_score 2164663519676 85899345930 0.6971099896480333 317827595278 85899345930 0.6971099896480333 472446424341 85899345930 0.6971099896480333 3118146262932 85899345930 0.6971099896480333 214748380804 85899345930 0.6971099896480333
Details:
In diesem Beispiel sehen wir, dass diese Datensätze nur primary_name
gemeinsam haben.
Weitere Informationen finden Sie unter: