You can use Image Classification - TensorFlow as an Amazon SageMaker AI built-in algorithm. The following section describes how to use Image Classification - TensorFlow with the SageMaker AI Python SDK. For information on how to use Image Classification - TensorFlow from the Amazon SageMaker Studio Classic UI, see SageMaker JumpStart pretrained models.
The Image Classification - TensorFlow algorithm supports transfer learning using any of the
compatible pretrained TensorFlow Hub models. For a list of all available pretrained models,
see TensorFlow Hub Models. Every pretrained model
has a unique model_id
. The following example uses MobileNet V2 1.00 224
(model_id
:
tensorflow-ic-imagenet-mobilenet-v2-100-224-classification-4
) to
fine-tune on a custom dataset. The pretrained models are all pre-downloaded from the
TensorFlow Hub and stored in Amazon S3 buckets so that training jobs can run in network
isolation. Use these pre-generated model training artifacts to construct a SageMaker AI
Estimator.
First, retrieve the Docker image URI, training script URI, and pretrained model URI.
Then, change the hyperparameters as you see fit. You can see a Python dictionary of all
available hyperparameters and their default values with
hyperparameters.retrieve_default
. For more information, see Image Classification - TensorFlow
Hyperparameters. Use these
values to construct a SageMaker AI Estimator.
Note
Default hyperparameter values are different for different models. For larger models, the
default batch size is smaller and the train_only_top_layer
hyperparameter is set to "True"
.
This example uses the tf_flowers
.fit
using
the Amazon S3 location of your training dataset.
from sagemaker import image_uris, model_uris, script_uris, hyperparameters
from sagemaker.estimator import Estimator
model_id, model_version = "tensorflow-ic-imagenet-mobilenet-v2-100-224-classification-4"
, "*"
training_instance_type = "ml.p3.2xlarge"
# Retrieve the Docker image
train_image_uri = image_uris.retrieve(model_id=model_id,model_version=model_version,image_scope="training",instance_type=training_instance_type,region=None,framework=None)
# Retrieve the training script
train_source_uri = script_uris.retrieve(model_id=model_id, model_version=model_version, script_scope="training")
# Retrieve the pretrained model tarball for transfer learning
train_model_uri = model_uris.retrieve(model_id=model_id, model_version=model_version, model_scope="training")
# Retrieve the default hyper-parameters for fine-tuning the model
hyperparameters = hyperparameters.retrieve_default(model_id=model_id, model_version=model_version)
# [Optional] Override default hyperparameters with custom values
hyperparameters["epochs"] = "5"
# The sample training data is available in the following S3 bucket
training_data_bucket = f"jumpstart-cache-prod-{aws_region}"
training_data_prefix = "training-datasets/tf_flowers/"
training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}"
output_bucket = sess.default_bucket()
output_prefix = "jumpstart-example-ic-training"
s3_output_location = f"s3://{output_bucket}/{output_prefix}/output"
# Create SageMaker Estimator instance
tf_ic_estimator = Estimator(
role=aws_role,
image_uri=train_image_uri,
source_dir=train_source_uri,
model_uri=train_model_uri,
entry_point="transfer_learning.py",
instance_count=1,
instance_type=training_instance_type,
max_run=360000,
hyperparameters=hyperparameters,
output_path=s3_output_location,
)
# Use S3 path of the training data to launch SageMaker TrainingJob
tf_ic_estimator.fit({"training": training_dataset_s3_path}, logs=True)