Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

(Archived) SageMaker model parallelism library v1.x

Focus mode
(Archived) SageMaker model parallelism library v1.x - Amazon SageMaker AI
Important

As of December 19, 2023, the SageMaker model parallelism (SMP) library v2 is released. In favor of the SMP library v2, the SMP v1 capabilites are no longer supported in future releases. The following section and topics are archived and specific to using the SMP library v1. For information about using the SMP library v2, see SageMaker model parallelism library v2.

Use Amazon SageMaker AI's model parallel library to train large deep learning (DL) models that are difficult to train due to GPU memory limitations. The library automatically and efficiently splits a model across multiple GPUs and instances. Using the library, you can achieve a target prediction accuracy faster by efficiently training larger DL models with billions or trillions of parameters.

You can use the library to automatically partition your own TensorFlow and PyTorch models across multiple GPUs and multiple nodes with minimal code changes. You can access the library's API through the SageMaker Python SDK.

Use the following sections to learn more about model parallelism and the SageMaker model parallel library. This library's API documentation is located at Distributed Training APIs in the SageMaker Python SDK v2.199.0 documentation.

PrivacySite termsCookie preferences
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.