Testing models with shadow variants - Amazon SageMaker AI

Testing models with shadow variants

You can use SageMaker AI Model Shadow Deployments to create long running shadow variants to validate any new candidate component of your model serving stack before promoting it to production. The following diagram shows how shadow variants work in more detail.

Details of a shadow variant.

Deploy shadow variants

The following code example shows how you can programmatically deploy shadow variants. Replace the user placeholder text in the example with your own information.

  1. Create two SageMaker AI models: one for your production variant, and one for your shadow variant.

    import boto3 from sagemaker import get_execution_role, Session aws_region = "aws-region" boto_session = boto3.Session(region_name=aws_region) sagemaker_client = boto_session.client("sagemaker") role = get_execution_role() bucket = Session(boto_session).default_bucket() model_name1 = "name-of-your-first-model" model_name2 = "name-of-your-second-model" sagemaker_client.create_model( ModelName = model_name1, ExecutionRoleArn = role, Containers=[ { "Image": "ecr-image-uri-for-first-model", "ModelDataUrl": "s3-location-of-trained-first-model" } ] ) sagemaker_client.create_model( ModelName = model_name2, ExecutionRoleArn = role, Containers=[ { "Image": "ecr-image-uri-for-second-model", "ModelDataUrl": "s3-location-of-trained-second-model" } ] )
  2. Create an endpoint configuration. Specify both your production and shadow variants in the configuration.

    endpoint_config_name = name-of-your-endpoint-config create_endpoint_config_response = sagemaker_client.create_endpoint_config( EndpointConfigName=endpoint_config_name, ProductionVariants=[ { "VariantName": name-of-your-production-variant, "ModelName": model_name1, "InstanceType": "ml.m5.xlarge", "InitialInstanceCount": 1, "InitialVariantWeight": 1, } ], ShadowProductionVariants=[ { "VariantName": name-of-your-shadow-variant, "ModelName": model_name2, "InstanceType": "ml.m5.xlarge", "InitialInstanceCount": 1, "InitialVariantWeight": 1, } ] )
  3. Create an endpoint.

    create_endpoint_response = sm.create_endpoint( EndpointName=name-of-your-endpoint, EndpointConfigName=endpoint_config_name, )