Tune a TabTransformer model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by running many jobs that test a range of hyperparameters on your training and validation datasets. Model tuning focuses on the following hyperparameters:
Note
The learning objective function and evaluation metric are both automatically assigned based on the type of classification task, which is determined by the number of unique integers in the label column. For more information, see TabTransformer hyperparameters.
-
A learning objective function to optimize during model training
-
An evaluation metric that is used to evaluate model performance during validation
-
A set of hyperparameters and a range of values for each to use when tuning the model automatically
Automatic model tuning searches your chosen hyperparameters to find the combination of values that results in a model that optimizes the chosen evaluation metric.
Note
Automatic model tuning for TabTransformer is only available from the Amazon SageMaker AI SDKs, not from the SageMaker AI console.
For more information about model tuning, see Automatic model tuning with SageMaker AI.
Evaluation metrics computed by the TabTransformer algorithm
The SageMaker AI TabTransformer algorithm computes the following metrics to use for model validation. The evaluation metric is automatically assigned based on the type of classification task, which is determined by the number of unique integers in the label column.
Metric Name | Description | Optimization Direction | Regex Pattern |
---|---|---|---|
r2 |
r square | maximize | "metrics={'r2': (\\S+)}" |
f1_score |
binary cross entropy | maximize | "metrics={'f1': (\\S+)}" |
accuracy_score |
multiclass cross entropy | maximize | "metrics={'accuracy': (\\S+)}" |
Tunable TabTransformer hyperparameters
Tune the TabTransformer model with the following hyperparameters. The
hyperparameters that have the greatest effect on optimizing the TabTransformer
evaluation metrics are: learning_rate
, input_dim
,
n_blocks
, attn_dropout
, mlp_dropout
, and
frac_shared_embed
. For a list of all the TabTransformer
hyperparameters, see TabTransformer hyperparameters.
Parameter Name | Parameter Type | Recommended Ranges |
---|---|---|
learning_rate |
ContinuousParameterRanges | MinValue: 0.001, MaxValue: 0.01 |
input_dim |
CategoricalParameterRanges | [16 , 32 , 64 , 128 , 256 , 512 ] |
n_blocks |
IntegerParameterRanges | MinValue: 1, MaxValue: 12 |
attn_dropout |
ContinuousParameterRanges | MinValue: 0.0, MaxValue: 0.8 |
mlp_dropout |
ContinuousParameterRanges | MinValue: 0.0, MaxValue: 0.8 |
frac_shared_embed |
ContinuousParameterRanges | MinValue: 0.0, MaxValue: 0.5 |