本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
使用张量并行度运行 SageMaker 分布式模型并行训练 Job
在本部分中,您将学习:
-
如何配置 SageMaker PyTorch 估计器和 SageMaker 模型并行度选项以使用张量并行度。
-
如何使用扩展的
smdistributed.modelparallel
模块来调整训练脚本以用于张量并行性。
要了解有关smdistributed.modelparallel
模块的更多信息,请参阅 SageMaker Python SDK 文档APIs中的并行SageMaker 模型
仅使用张量并行性
以下分布式训练选项示例单独激活张量并行性,不使用管道并行性。配置mpi_options
和smp_options
字典以为 SageMaker PyTorch
估计器指定分布式训练选项。
注意
扩展的内存节省功能可通过 Deep Learning Containers for 获得 PyTorch,该容器实现了 SageMaker 模型并行度库 v1.6.0 或更高版本。
配置 SageMaker PyTorch 估算器
mpi_options = { "enabled" : True, "processes_per_host" : 8, # 8 processes "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none " } smp_options = { "enabled":True, "parameters": { "pipeline_parallel_degree": 1, # alias for "partitions" "placement_strategy": "cluster", "tensor_parallel_degree": 4, # tp over 4 devices "ddp": True } } smp_estimator = PyTorch( entry_point='
your_training_script.py
', # Specify role=role, instance_type='ml.p3.16xlarge
', sagemaker_session=sagemaker_session, framework_version='1.13.1', py_version='py36', instance_count=1, distribution={ "smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options }, base_job_name="SMD-MP-demo
", ) smp_estimator.fit('s3://my_bucket/my_training_data/
')
提示
要查找的完整参数列表distribution
,请参阅 Pyth SageMaker on SDK文档中的模型并行度配置参数
调整您的 PyTorch 训练脚本
以下示例训练脚本展示了如何根据训练脚本调整 SageMaker 模型并行度库。在此示例中,假设脚本命名为 your_training_script.py
。
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchnet.dataset import SplitDataset from torchvision import datasets import smdistributed.modelparallel.torch as smp class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) return F.log_softmax(x, 1) def train(model, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): # smdistributed: Move input tensors to the GPU ID used by # the current process, based on the set_device call. data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target, reduction="mean") loss.backward() optimizer.step() # smdistributed: Initialize the backend smp.init() # smdistributed: Set the device to the GPU ID used by the current process. # Input tensors should be transferred to this device. torch.cuda.set_device(smp.local_rank()) device = torch.device("cuda") # smdistributed: Download only on a single process per instance. # When this is not present, the file is corrupted by multiple processes trying # to download and extract at the same time if smp.local_rank() == 0: dataset = datasets.MNIST("../data", train=True, download=False) smp.barrier() # smdistributed: Shard the dataset based on data parallel ranks if smp.dp_size() > 1: partitions_dict = {f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size())} dataset = SplitDataset(dataset, partitions=partitions_dict) dataset.select(f"{smp.dp_rank()}") train_loader = torch.utils.data.DataLoader(dataset, batch_size=64) # smdistributed: Enable tensor parallelism for all supported modules in the model # i.e., nn.Linear in this case. Alternatively, we can use # smp.set_tensor_parallelism(model.fc1, True) # to enable it only for model.fc1 with smp.tensor_parallelism(): model = Net() # smdistributed: Use the DistributedModel wrapper to distribute the # modules for which tensor parallelism is enabled model = smp.DistributedModel(model) optimizer = optim.AdaDelta(model.parameters(), lr=4.0) optimizer = smp.DistributedOptimizer(optimizer) train(model, device, train_loader, optimizer)
张量并行性与管道并行性相结合
以下是一个分布式训练选项的示例,该选项支持张量并行性与流水线并行性相结合。 设置mpi_options
和smp_options
参数,以便在配置估计器时使用张量并行度指定模型并行度选项。 SageMaker PyTorch
注意
扩展的内存节省功能可通过 Deep Learning Containers for 获得 PyTorch,该容器实现了 SageMaker 模型并行度库 v1.6.0 或更高版本。
配置 SageMaker PyTorch 估算器
mpi_options = { "enabled" : True, "processes_per_host" : 8, # 8 processes "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none " } smp_options = { "enabled":True, "parameters": { "microbatches": 4,
"pipeline_parallel_degree": 2
, # alias for "partitions" "placement_strategy": "cluster","tensor_parallel_degree": 2
, # tp over 2 devices "ddp": True } } smp_estimator = PyTorch( entry_point='your_training_script.py
', # Specify role=role, instance_type='ml.p3.16xlarge
', sagemaker_session=sagemaker_session, framework_version='1.13.1', py_version='py36', instance_count=1, distribution={ "smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options }, base_job_name="SMD-MP-demo
", ) smp_estimator.fit('s3://my_bucket/my_training_data/
')
调整您的 PyTorch 训练脚本
以下示例训练脚本展示了如何根据训练脚本调整 SageMaker 模型并行度库。请注意,训练脚本现在包括 smp.step
修饰器:
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchnet.dataset import SplitDataset from torchvision import datasets import smdistributed.modelparallel.torch as smp class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) return F.log_softmax(x, 1) # smdistributed: Define smp.step. Return any tensors needed outside. @smp.step def train_step(model, data, target): output = model(data) loss = F.nll_loss(output, target, reduction="mean") model.backward(loss) return output, loss def train(model, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): # smdistributed: Move input tensors to the GPU ID used by # the current process, based on the set_device call. data, target = data.to(device), target.to(device) optimizer.zero_grad() # Return value, loss_mb is a StepOutput object _, loss_mb = train_step(model, data, target) # smdistributed: Average the loss across microbatches. loss = loss_mb.reduce_mean() optimizer.step() # smdistributed: Initialize the backend smp.init() # smdistributed: Set the device to the GPU ID used by the current process. # Input tensors should be transferred to this device. torch.cuda.set_device(smp.local_rank()) device = torch.device("cuda") # smdistributed: Download only on a single process per instance. # When this is not present, the file is corrupted by multiple processes trying # to download and extract at the same time if smp.local_rank() == 0: dataset = datasets.MNIST("../data", train=True, download=False) smp.barrier() # smdistributed: Shard the dataset based on data parallel ranks if smp.dp_size() > 1: partitions_dict = {f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size())} dataset = SplitDataset(dataset, partitions=partitions_dict) dataset.select(f"{smp.dp_rank()}") # smdistributed: Set drop_last=True to ensure that batch size is always divisible # by the number of microbatches train_loader = torch.utils.data.DataLoader(dataset, batch_size=64, drop_last=True) model = Net() # smdistributed: enable tensor parallelism only for model.fc1 smp.set_tensor_parallelism(model.fc1, True) # smdistributed: Use the DistributedModel container to provide the model # to be partitioned across different ranks. For the rest of the script, # the returned DistributedModel object should be used in place of # the model provided for DistributedModel class instantiation. model = smp.DistributedModel(model) optimizer = optim.AdaDelta(model.parameters(), lr=4.0) optimizer = smp.DistributedOptimizer(optimizer) train(model, device, train_loader, optimizer)