測試模型模型 - Amazon SageMaker

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

測試模型模型

以下可摺疊部分提供 Amazon SageMaker Neo 團隊測試之機器學習模型的相關資訊。根據您的架構展開可折疊區段,檢查模型是否受測試。

注意

可使用 Neo 進行編譯之模型的清單並不完整。

請參閱支援的架構SageMaker Neo 支持的運算符,以了解是否可以使用 SageMaker Neo 編譯模型。

模型

ARMV8

ARM马里

安巴雷拉 CV22

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

Alexnet

Resnet50

X

X

X

X

X

X

X

YOLOv2

X

X

X

X

X

YOLOv2_ 微小

X

X

X

X

X

X

X

YOLOv3_416

X

X

X

X

X

YOLOv3_ 微小

X

X

X

X

X

X

X

模型

ARMV8

ARM马里

安巴雷拉 CV22

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

Alexnet

X

Densenet121

X

DenseNet201

X

X

X

X

X

X

X

X

GoogLeNet

X

X

X

X

X

X

X

InceptionV3

X

X

X

X

X

MobileNet0.75

X

X

X

X

X

X

MobileNet1.0

X

X

X

X

X

X

X

MobileNetV2_0.5

X

X

X

X

X

X

MobileNetV2_1.0

X

X

X

X

X

X

X

X

X

MobileNet三 _ 大型

X

X

X

X

X

X

X

X

X

MobileNet小型

X

X

X

X

X

X

X

X

X

ResNeSt50

X

X

X

X

ResNet18_v1

X

X

X

X

X

X

X

ResNet

X

X

X

X

X

X

ResNet

X

X

X

X

X

X

X

X

ResNet

X

X

X

X

X

X

X

X

ResNext101_32x4d

ResNext全天候

X

X

X

X

X

X

SENet_154

X

X

X

X

X

SE_ ResNext

X

X

X

X

X

X

X

SqueezeNet1.0

X

X

X

X

X

X

X

SqueezeNet1.1

X

X

X

X

X

X

X

X

VGG11

X

X

X

X

X

X

X

Xception

X

X

X

X

X

X

X

X

darknet53

X

X

X

X

X

X

X

resnet18_v1b_0.89

X

X

X

X

X

X

resnet50_v1d_0.11

X

X

X

X

X

X

resnet50_v1d_0.86

X

X

X

X

X

X

X

X

ssd_512_mobilenet1.0_coco

X

X

X

X

X

X

X

ssd_512_mobilenet1.0_voc

X

X

X

X

X

X

X

ssd_resnet50_v1

X

X

X

X

X

X

yolo3_darknet53_coco

X

X

X

X

X

yolo3_mobilenet1.0_coco

X

X

X

X

X

X

X

deeplab_resnet50

X

模型

ARMV8

ARM马里

安巴雷拉 CV22

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

densenet121

X

X

X

X

X

X

X

X

densenet201

X

X

X

X

X

X

X

inception_v3

X

X

X

X

X

X

X

mobilenet_v1

X

X

X

X

X

X

X

X

mobilenet_v2

X

X

X

X

X

X

X

X

resnet152_v1

X

X

X

resnet152_v2

X

X

X

resnet50_v1

X

X

X

X

X

X

X

resnet50_v2

X

X

X

X

X

X

X

X

vgg16

X

X

X

X

X

模型

ARMV8

ARM马里

安巴雷拉 CV22

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

alexnet

X

mobilenetv2-1.0

X

X

X

X

X

X

X

X

resnet18v1

X

X

X

X

resnet18v2

X

X

X

X

resnet50v1

X

X

X

X

X

X

resnet50v2

X

X

X

X

X

X

resnet152v1

X

X

X

X

resnet152v2

X

X

X

X

squeezenet1.1

X

X

X

X

X

X

X

vgg19

X

X

模型

ARMV8

ARM马里

安巴雷拉 CV22

安巴雷拉 CV25

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

densenet121

X

X

X

X

X

X

X

X

X

inception_v3

X

X

X

X

X

X

resnet152

X

X

X

X

resnet18

X

X

X

X

X

X

resnet50

X

X

X

X

X

X

X

X

squeezenet1.0

X

X

X

X

X

X

squeezenet1.1

X

X

X

X

X

X

X

X

X

yolov4

X

X

yolov5

X

X

X

fasterrcnn_resnet50_fpn

X

X

maskrcnn_resnet50_fpn

X

X

TensorFlow

模型

ARMV8

ARM马里

安巴雷拉 CV22

安巴雷拉 CV25

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

densenet201

X

X

X

X

X

X

X

X

X

inception_v3

X

X

X

X

X

X

X

X

mobilenet100_v1

X

X

X

X

X

X

X

mobilenet100_v2.0

X

X

X

X

X

X

X

X

mobilenet130_v2

X

X

X

X

X

X

mobilenet140_v2

X

X

X

X

X

X

X

X

resnet50_v1.5

X

X

X

X

X

X

X

resnet50_v2

X

X

X

X

X

X

X

X

X

squeezenet

X

X

X

X

X

X

X

X

X

mask_rcnn_inception_resnet_v2

X

ssd_mobilenet_v2

X

X

faster_rcnn_resnet50_lowproposals

X

rfcn_resnet101

X

TensorFlow.Keras

模型

ARMV8

ARM马里

安巴雷拉 CV22

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

DenseNet121

X

X

X

X

X

X

X

DenseNet201

X

X

X

X

X

X

InceptionV3

X

X

X

X

X

X

X

MobileNet

X

X

X

X

X

X

X

MobileNetv2

X

X

X

X

X

X

X

NASNetLarge

X

X

X

X

NASNetMobile

X

X

X

X

X

X

X

ResNet101

X

X

X

X

ResNet101V2

X

X

X

X

ResNet152

X

X

X

ResNet152v2

X

X

X

ResNet50

X

X

X

X

X

X

ResNet50V2

X

X

X

X

X

X

X

VGG16

X

X

X

X

Xception

X

X

X

X

X

X

X

TensorFlow-Lite (FP32)

模型

ARMV8

ARM马里

安巴雷拉 CV22

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

i.MX 8M Plus

densenet_2018_04_27

X

X

X

X

X

inception_resnet_v2_2018_04_27

X

X

X

X

inception_v3_2018_04_27

X

X

X

X

X

inception_v4_2018_04_27

X

X

X

X

X

mnasnet_0.5_224_09_07_2018

X

X

X

X

X

mnasnet_1.0_224_09_07_2018

X

X

X

X

X

mnasnet_1.3_224_09_07_2018

X

X

X

X

X

mobilenet_v1_0.25_128

X

X

X

X

X

X

mobilenet_v1_0.25_224

X

X

X

X

X

X

mobilenet_v1_0.5_128

X

X

X

X

X

X

mobilenet_v1_0.5_224

X

X

X

X

X

X

mobilenet_v1_0.75_128

X

X

X

X

X

X

mobilenet_v1_0.75_224

X

X

X

X

X

X

mobilenet_v1_1.0_128

X

X

X

X

X

X

mobilenet_v1_1.0_192

X

X

X

X

X

X

mobilenet_v2_1.0_224

X

X

X

X

X

X

resnet_v2_101

X

X

X

X

squeezenet_2018_04_27

X

X

X

X

X

TensorFlow-Lite (INT8)

模型

ARMV8

ARM马里

安巴雷拉 CV22

Nvidia

Panorama

TI TDA4VM

高通公司 QCS6

X86_Linux

X86_Windows

i.MX 8M Plus

inception_v1

X

X

inception_v2

X

X

inception_v3

X

X

X

X

X

inception_v4_299

X

X

X

X

X

mobilenet_v1_0.25_128

X

X

X

X

mobilenet_v1_0.25_224

X

X

X

X

mobilenet_v1_0.5_128

X

X

X

X

mobilenet_v1_0.5_224

X

X

X

X

mobilenet_v1_0.75_128

X

X

X

X

mobilenet_v1_0.75_224

X

X

X

X

X

mobilenet_v1_1.0_128

X

X

X

X

mobilenet_v1_1.0_224

X

X

X

X

X

mobilenet_v2_1.0_224

X

X

X

X

X

deeplab-v3_513

X