本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
測試模型模型
以下可摺疊部分提供 Amazon SageMaker Neo 團隊測試之機器學習模型的相關資訊。根據您的架構展開可折疊區段,檢查模型是否受測試。
注意
可使用 Neo 進行編譯之模型的清單並不完整。
請參閱支援的架構和 SageMaker Neo 支持的運算符
模型 |
ARMV8 |
ARM马里 |
安巴雷拉 CV22 |
Nvidia |
Panorama |
TI TDA4VM |
高通公司 QCS6 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|
Alexnet |
|||||||||
Resnet50 |
X |
X |
X |
X |
X |
X |
X |
||
YOLOv2 |
X |
X |
X |
X |
X |
||||
YOLOv2_ 微小 |
X |
X |
X |
X |
X |
X |
X |
||
YOLOv3_416 |
X |
X |
X |
X |
X |
||||
YOLOv3_ 微小 |
X |
X |
X |
X |
X |
X |
X |
模型 |
ARMV8 |
ARM马里 |
安巴雷拉 CV22 |
Nvidia |
Panorama |
TI TDA4VM |
高通公司 QCS6 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|
Alexnet |
X |
||||||||
Densenet121 |
X |
||||||||
DenseNet201 |
X |
X |
X |
X |
X |
X |
X |
X |
|
GoogLeNet |
X |
X |
X |
X |
X |
X |
X |
||
InceptionV3 |
X |
X |
X |
X |
X |
||||
MobileNet0.75 |
X |
X |
X |
X |
X |
X |
|||
MobileNet1.0 |
X |
X |
X |
X |
X |
X |
X |
||
MobileNetV2_0.5 |
X |
X |
X |
X |
X |
X |
|||
MobileNetV2_1.0 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
MobileNet三 _ 大型 |
X |
X | X |
X |
X |
X |
X |
X |
X |
MobileNet小型 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
ResNeSt50 |
X |
X |
X |
X |
|||||
ResNet18_v1 |
X |
X |
X |
X |
X |
X |
X |
||
ResNet |
X |
X |
X |
X |
X |
X |
|||
ResNet |
X |
X |
X |
X |
X |
X |
X |
X |
|
ResNet |
X | X |
X |
X |
X |
X |
X |
X |
|
ResNext101_32x4d |
|||||||||
ResNext全天候 |
X |
X |
X |
X |
X |
X |
|||
SENet_154 |
X |
X |
X |
X |
X |
||||
SE_ ResNext |
X |
X |
X |
X |
X | X |
X |
||
SqueezeNet1.0 |
X |
X |
X |
X |
X |
X |
X |
||
SqueezeNet1.1 |
X |
X |
X |
X |
X |
X |
X |
X |
|
VGG11 |
X |
X |
X |
X |
X |
X |
X |
||
Xception |
X |
X |
X |
X |
X |
X |
X |
X |
|
darknet53 |
X |
X |
X |
X |
X |
X |
X |
||
resnet18_v1b_0.89 |
X |
X |
X |
X |
X |
X |
|||
resnet50_v1d_0.11 |
X |
X |
X |
X |
X |
X |
|||
resnet50_v1d_0.86 |
X |
X |
X |
X |
X |
X |
X |
X |
|
ssd_512_mobilenet1.0_coco |
X |
X |
X |
X |
X |
X |
X |
||
ssd_512_mobilenet1.0_voc |
X |
X | X |
X |
X |
X |
X |
||
ssd_resnet50_v1 |
X |
X |
X |
X |
X |
X |
|||
yolo3_darknet53_coco |
X |
X |
X |
X |
X |
||||
yolo3_mobilenet1.0_coco |
X |
X |
X |
X |
X |
X |
X |
||
deeplab_resnet50 |
X |
模型 |
ARMV8 |
ARM马里 |
安巴雷拉 CV22 |
Nvidia |
Panorama |
TI TDA4VM |
高通公司 QCS6 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|
densenet121 |
X |
X |
X |
X |
X |
X |
X |
X |
|
densenet201 |
X |
X |
X |
X |
X |
X |
X |
||
inception_v3 |
X |
X |
X |
X |
X |
X |
X |
||
mobilenet_v1 |
X |
X |
X |
X |
X |
X |
X |
X |
|
mobilenet_v2 |
X |
X |
X |
X |
X |
X |
X |
X |
|
resnet152_v1 |
X |
X |
X |
||||||
resnet152_v2 |
X |
X |
X |
||||||
resnet50_v1 |
X |
X |
X |
X |
X |
X |
X |
||
resnet50_v2 |
X |
X |
X |
X |
X |
X |
X |
X |
|
vgg16 |
X |
X |
X |
X |
X |
模型 |
ARMV8 |
ARM马里 |
安巴雷拉 CV22 |
Nvidia |
Panorama |
TI TDA4VM |
高通公司 QCS6 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|
alexnet |
X |
||||||||
mobilenetv2-1.0 |
X |
X |
X |
X |
X |
X |
X |
X |
|
resnet18v1 |
X |
X |
X |
X |
|||||
resnet18v2 |
X |
X |
X |
X |
|||||
resnet50v1 |
X |
X |
X |
X |
X |
X |
|||
resnet50v2 |
X |
X |
X |
X |
X |
X |
|||
resnet152v1 |
X |
X |
X |
X |
|||||
resnet152v2 |
X |
X |
X |
X |
|||||
squeezenet1.1 |
X |
X |
X |
X |
X |
X |
X |
||
vgg19 |
X |
X |
模型 |
ARMV8 |
ARM马里 |
安巴雷拉 CV22 |
安巴雷拉 CV25 |
Nvidia |
Panorama |
TI TDA4VM |
高通公司 QCS6 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|---|
densenet121 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
|
inception_v3 |
X |
X |
X |
X |
X |
X |
||||
resnet152 |
X |
X |
X |
X |
||||||
resnet18 |
X |
X |
X |
X |
X |
X |
||||
resnet50 |
X |
X |
X |
X |
X |
X |
X |
X |
||
squeezenet1.0 |
X |
X |
X |
X |
X |
X | ||||
squeezenet1.1 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
|
yolov4 |
X |
X |
||||||||
yolov5 |
X |
X |
X |
|||||||
fasterrcnn_resnet50_fpn |
X |
X |
||||||||
maskrcnn_resnet50_fpn |
X |
X |