Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
Vídeos tutoriales sobre el depurador
En los siguientes vídeos se ofrece un recorrido por las capacidades de Amazon SageMaker Debugger mediante instancias de SageMaker Studio y SageMaker Notebook.
Temas
Depuración de modelos con Amazon SageMaker Debugger en Studio Classic
Julien Simon, evangelista AWS técnico | Duración: 14 minutos y 17 segundos
En este vídeo tutorial se muestra cómo utilizar Amazon SageMaker Debugger para capturar e inspeccionar la información de depuración de un modelo de formación. El ejemplo de modelo de entrenamiento utilizado en este vídeo es una red neuronal convolucional simple (CNN) basada en Keras con el backend. TensorFlow SageMaker en un TensorFlow marco y Debugger permiten crear un estimador directamente utilizando el guion de entrenamiento y depurar el trabajo de entrenamiento.
Encontrará el bloc de notas de ejemplo en el vídeo de este repositorio de demostración de Studiodebugger.ipynb
bloc de notas y el guion de mnist_keras_tf.py
entrenamiento en su SageMaker Studio o en una instancia de SageMaker bloc de notas. Después de clonar los dos archivos, especifique la ruta de acceso keras_script_path
al archivo mnist_keras_tf.py
dentro del bloc de notas debugger.ipynb
. Por ejemplo, si clona los dos archivos en el mismo directorio, establézcalo como keras_script_path =
"mnist_keras_tf.py"
.
Profundice en Amazon SageMaker Debugger y el monitor de SageMaker modelos
Julien Simon, evangelista AWS técnico | Duración: 44 minutos y 34 segundos
Esta sesión de vídeo explora las funciones avanzadas de Debugger y SageMaker Model Monitor que ayudan a aumentar la productividad y la calidad de sus modelos. En primer lugar, este vídeo muestra cómo detectar y corregir problemas de entrenamiento, visualizar tensores y mejorar modelos con el depurador. A continuación, a las 22:41, el vídeo muestra cómo supervisar los modelos en producción e identificar problemas de predicción, como la falta de funciones o la desviación de los datos, mediante SageMaker Model Monitor. Por último, ofrece consejos de optimización de costos para ayudarle a sacar el máximo partido a su presupuesto de machine learning.
Encontrará el cuaderno de ejemplo en el vídeo en este repositorio de AWS
Dev Days 2020