Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Déployez des modèles
Vous pouvez déployer le module de calcul sur des appareils en périphérie à ressources limitées en téléchargeant le modèle compilé depuis Amazon S3 sur votre périphérique, et en utilisant DLR
Avant de poursuivre, assurez-vous que votre appareil Edge doit être compatible avec SageMaker Neo. Veuillez consulter Supported Frameworks, Devices, Systems, and Architectures (Cadres, périphériques, systèmes et architectures pris en charge) pour connaître les appareils en périphérie pris en charge. Assurez-vous d'avoir spécifié votre appareil en périphérie cible lors de l'envoi de la tâche de compilation. Veuillez consulter Use Neo to Compile a Model (Utiliser Neo pour compiler un modèle).
Déploiement d'un modèle compilé (DLR)
DLR
Vous pouvez installer la dernière version du package DLR à l'aide de la commande pip suivante :
pip install dlr
Pour installer DLR sur des cibles GPU ou des appareils en périphérie non x86, veuillez consulter Releases (Versions)
pip install https://neo-ai-dlr-release.s3-us-west-2.amazonaws.com/v1.3.0/pi-armv7l-raspbian4.14.71-glibc2_24-libstdcpp3_4/dlr-1.3.0-py3-none-any.whl
Déploiement d'un modèle (AWS IoT Greengrass)
AWS IoT Greengrass étend les fonctionnalités du cloud aux appareils locaux. Il permet aux appareils de collecter et d'analyser les données plus près de la source des informations, de réagir de manière autonome aux événements locaux et de communiquer en toute sécurité sur les réseaux locaux. Avec AWS IoT Greengrass, vous pouvez effectuer des inférences d'apprentissage automatique à la périphérie sur des données générées localement à l'aide de modèles conçus dans le cloud. Actuellement, vous pouvez déployer des modèles sur tous les appareils AWS IoT Greengrass basés sur les processeurs ARM Cortex-A, Intel Atom et Nvidia Jetson. Pour plus d'informations sur le déploiement d'une application d'inférence Lambda pour effectuer des inférences d'apprentissage automatique avec AWS IoT Greengrass, consultez Comment configurer une inférence d'apprentissage automatique optimisée à l'aide de la console de gestion. AWS