Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Exemple de code HuggingFaceProcessor à utiliser dans le SDK Amazon SageMaker Python

Mode de mise au point
Exemple de code HuggingFaceProcessor à utiliser dans le SDK Amazon SageMaker Python - Amazon SageMaker AI

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Hugging Face est un fournisseur open source de modèles de traitement du langage naturel (NLP). Le HuggingFaceProcessor SDK Amazon SageMaker Python vous permet d'exécuter des tâches de traitement à l'aide de scripts Hugging Face. Lorsque vous utilisez le HuggingFaceProcessor, vous pouvez exploiter un conteneur Docker créé par Amazon avec un environnement Hugging Face géré afin que de ne pas devoir apporter votre propre conteneur.

L'exemple de code suivant montre comment vous pouvez utiliser le HuggingFaceProcessor pour exécuter votre tâche de traitement à l'aide d'une image Docker fournie et gérée par SageMaker AI. Notez que lorsque vous exécutez la tâche, vous pouvez spécifier un répertoire contenant vos scripts et dépendances dans l'source_dirargument, et vous pouvez avoir un requirements.txt fichier situé dans votre source_dir répertoire qui spécifie les dépendances de vos scripts de traitement. SageMaker Le traitement installe les dépendances requirements.txt dans le conteneur pour vous.

from sagemaker.huggingface import HuggingFaceProcessor from sagemaker.processing import ProcessingInput, ProcessingOutput from sagemaker import get_execution_role #Initialize the HuggingFaceProcessor hfp = HuggingFaceProcessor( role=get_execution_role(), instance_count=1, instance_type='ml.g4dn.xlarge', transformers_version='4.4.2', pytorch_version='1.6.0', base_job_name='frameworkprocessor-hf' ) #Run the processing job hfp.run( code='processing-script.py', source_dir='scripts', inputs=[ ProcessingInput( input_name='data', source=f's3://{BUCKET}/{S3_INPUT_PATH}', destination='/opt/ml/processing/input/data/' ) ], outputs=[ ProcessingOutput(output_name='train', source='/opt/ml/processing/output/train/', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'), ProcessingOutput(output_name='test', source='/opt/ml/processing/output/test/', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'), ProcessingOutput(output_name='val', source='/opt/ml/processing/output/val/', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}') ] )

Si vous avez un fichier requirements.txt, il doit s'agir d'une liste de bibliothèques que vous souhaitez installer dans le conteneur. Le chemin d'accès pour source_dir peut être un chemin d'accès relatif, absolu ou par URI Amazon S3. Toutefois, si vous utilisez un chemin d'accès par URI Amazon S3, celui-ci doit pointer vers un fichier tar.gz. Vous pouvez disposer de plusieurs scripts dans le répertoire que vous spécifiez pour source_dir. Pour en savoir plus sur cette HuggingFaceProcessor classe, consultez Hugging Face Estimator dans le SDK Amazon SageMaker AI Python.

ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.