Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Demander des inférences à partir d'un service déployé (Amazon SageMaker SDK)

Mode de mise au point
Demander des inférences à partir d'un service déployé (Amazon SageMaker SDK) - Amazon SageMaker AI

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Utilisez les exemples de code suivants pour demander des inférences à partir de votre service déployé en fonction du cadre que vous avez utilisé pour entraîner votre modèle. Les exemples de code sont similaires pour les différents cadres. La principale différence est que le type de contenu est TensorFlow requisapplication/json.

PyTorch et MXNet

Si vous utilisez la version PyTorch 1.4 ou une version ultérieure ou la MXNet version 1.7.0 ou une version ultérieure et que vous disposez d'un point de terminaison Amazon SageMaker AIInService, vous pouvez effectuer des demandes d'inférence à l'aide predictor du package du SDK SageMaker AI pour Python.

Note

L'API varie en fonction de la version du SDK SageMaker AI pour Python :

L'exemple de code suivant montre comment les utiliser pour envoyer une image APIs à des fins d'inférence :

SageMaker Python SDK v1.x
from sagemaker.predictor import RealTimePredictor endpoint = 'insert name of your endpoint here' # Read image into memory payload = None with open("image.jpg", 'rb') as f: payload = f.read() predictor = RealTimePredictor(endpoint=endpoint, content_type='application/x-image') inference_response = predictor.predict(data=payload) print (inference_response)
SageMaker Python SDK v2.x
from sagemaker.predictor import Predictor endpoint = 'insert name of your endpoint here' # Read image into memory payload = None with open("image.jpg", 'rb') as f: payload = f.read() predictor = Predictor(endpoint) inference_response = predictor.predict(data=payload) print (inference_response)
from sagemaker.predictor import RealTimePredictor endpoint = 'insert name of your endpoint here' # Read image into memory payload = None with open("image.jpg", 'rb') as f: payload = f.read() predictor = RealTimePredictor(endpoint=endpoint, content_type='application/x-image') inference_response = predictor.predict(data=payload) print (inference_response)

TensorFlow

L'exemple de code suivant montre comment utiliser l'API du SDK SageMaker Python pour envoyer une image à des fins d'inférence :

from sagemaker.predictor import Predictor from PIL import Image import numpy as np import json endpoint = 'insert the name of your endpoint here' # Read image into memory image = Image.open(input_file) batch_size = 1 image = np.asarray(image.resize((224, 224))) image = image / 128 - 1 image = np.concatenate([image[np.newaxis, :, :]] * batch_size) body = json.dumps({"instances": image.tolist()}) predictor = Predictor(endpoint) inference_response = predictor.predict(data=body) print(inference_response)
ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.