쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

SageMaker AI AutoGluon-Tabular 사용 방법

포커스 모드
SageMaker AI AutoGluon-Tabular 사용 방법 - Amazon SageMaker AI

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

AutoGluon-Tabular를 Amazon SageMaker AI 기본 제공 알고리즘으로 사용할 수 있습니다. 다음 섹션에서는 SageMaker Python SDK와 함께 AutoGluon-Tabular를 사용하는 방법을 설명합니다. Amazon SageMaker Studio Classic UI에서 AutoGluon-Tabular를 사용하는 방법에 대한 자세한 내용은 SageMaker JumpStart 사전 훈련된 모델 섹션을 참조하세요.

  • AutoGluon-Tabular를 기본 제공 알고리즘으로 사용하기

    AutoGluon-Tabular 기본 제공 알고리즘을 사용하여 다음 코드 예제와 같이 AutoGluon-Tabular 훈련 컨테이너를 빌드합니다. SageMaker AI API(또는 Amazon SageMaker Python SDK Amazon SageMaker 버전 2를 사용하는 경우 get_image_uri API)를 사용하여 AutoGluon-Tabular 내장 알고리즘 이미지 URI를 자동으로 찾을 수 있습니다. image_uris.retrieve

    AutoGluon-Tabular 이미지 URI를 지정한 후 AutoGluon-Tabular 컨테이너를 사용하여 SageMaker AI 예측기 API를 사용하여 예측기를 구성하고 훈련 작업을 시작할 수 있습니다. AutoGluon-Tabular의 기본 제공 알고리즘은 스크립트 모드에서 실행되지만 훈련 스크립트는 자동으로 제공되므로 교체할 필요가 없습니다. 스크립트 모드를 사용하여 SageMaker 훈련 작업을 생성한 경험이 풍부하다면 사용자의 AutoGluon-Tabular 훈련 스크립트를 직접 통합할 수 있습니다.

    from sagemaker import image_uris, model_uris, script_uris train_model_id, train_model_version, train_scope = "autogluon-classification-ensemble", "*", "training" training_instance_type = "ml.p3.2xlarge" # Retrieve the docker image train_image_uri = image_uris.retrieve( region=None, framework=None, model_id=train_model_id, model_version=train_model_version, image_scope=train_scope, instance_type=training_instance_type ) # Retrieve the training script train_source_uri = script_uris.retrieve( model_id=train_model_id, model_version=train_model_version, script_scope=train_scope ) train_model_uri = model_uris.retrieve( model_id=train_model_id, model_version=train_model_version, model_scope=train_scope ) # Sample training data is available in this bucket training_data_bucket = f"jumpstart-cache-prod-{aws_region}" training_data_prefix = "training-datasets/tabular_binary/" training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/train" validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/validation" output_bucket = sess.default_bucket() output_prefix = "jumpstart-example-tabular-training" s3_output_location = f"s3://{output_bucket}/{output_prefix}/output" from sagemaker import hyperparameters # Retrieve the default hyperparameters for training the model hyperparameters = hyperparameters.retrieve_default( model_id=train_model_id, model_version=train_model_version ) # [Optional] Override default hyperparameters with custom values hyperparameters[ "auto_stack" ] = "True" print(hyperparameters) from sagemaker.estimator import Estimator from sagemaker.utils import name_from_base training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training") # Create SageMaker Estimator instance tabular_estimator = Estimator( role=aws_role, image_uri=train_image_uri, source_dir=train_source_uri, model_uri=train_model_uri, entry_point="transfer_learning.py", instance_count=1, instance_type=training_instance_type, max_run=360000, hyperparameters=hyperparameters, output_path=s3_output_location ) # Launch a SageMaker Training job by passing the S3 path of the training data tabular_estimator.fit( { "training": training_dataset_s3_path, "validation": validation_dataset_s3_path, }, logs=True, job_name=training_job_name )

    AutoGluon-Tabular를 기본 제공 알고리즘으로 설정하는 방법에 대한 자세한 내용은 다음 노트북 예제를 참조하세요. 이러한 예제에서 사용되는 모든 S3 버킷은 이를 실행하는 데 사용되는 노트북 인스턴스와 동일한 AWS 리전에 있어야 합니다.

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.