Amazon SageMaker 디버거 - Amazon SageMaker

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

Amazon SageMaker 디버거

기계 학습 훈련 작업에서 모델 출력 텐서를 실시간으로 디버깅하고 Amazon SageMaker Debugger를 사용하여 수렴되지 않는 문제를 감지합니다.

Amazon SageMaker Debugger 기능

기계 학습(ML) 훈련 작업에 과적합, 포화 상태 활성화 함수, 그라데이션 소실 등의 문제가 발생하면 모델 성능이 저하될 수 있습니다.

SageMaker Debugger는 훈련 작업을 디버깅하고 이러한 문제를 해결하여 모델의 성능을 개선하는 도구를 제공합니다. Debugger는 훈련 이상이 발견된 경우 알림을 보내고, 문제에 대해 조치를 취하고, 수집된 지표 및 텐서를 시각화하여 문제의 근본 원인을 파악할 수 있는 도구도 제공합니다.

SageMaker 디버거는 Apache MXNet, PyTorch TensorFlow, 및 XGBoost 프레임워크를 지원합니다. SageMaker Debugger에서 지원하는 사용 가능한 프레임워크 및 버전에 대한 자세한 내용은 섹션을 참조하세요지원되는 프레임워크 및 알고리즘.

Amazon SageMaker Debugger 작동 방식 개요.

고급 Debugger 워크플로는 다음과 같습니다.

  1. 필요한 SDK 경우 sagemaker-debugger Python을 사용하여 훈련 스크립트를 수정합니다.

  2. SageMaker Debugger를 사용하여 SageMaker 훈련 작업을 구성합니다.

  3. 훈련 작업을 시작하고 훈련 문제를 실시간으로 모니터링하세요.

  4. 알림을 받고 나서 훈련 문제에 대해 즉각 조치를 취하세요.

  5. 훈련 문제에 대한 심층 분석 내용을 살펴보세요.

  6. 모델을 최적화하고 목표 정확도를 달성할 때까지 문제를 해결하고, Debugger에서 제공하는 제안 사항을 고려하고, 1~5단계를 반복하세요.

SageMaker Debugger 개발자 안내서는 다음 주제를 안내합니다.