쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

압축되지 않은 모델 배포하기

포커스 모드
압축되지 않은 모델 배포하기 - Amazon SageMaker AI

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

ML 모델을 배포할 때 한 가지 옵션은 모델 아티팩트를 보관하고 tar.gz 형식으로 압축하는 것입니다. 이 방법은 소형 모델에서 잘 작동하지만, 수천억 개의 파라미터가 포함된 대형 모델 아티팩트를 압축한 다음 엔드포인트에서 압축을 푸는 데는 상당한 시간이 걸릴 수 있습니다. 대규모 모델 추론의 경우 압축되지 않은 ML 모델을 배포하는 것이 좋습니다. 이 가이드에서는 압축되지 않은 ML 모델을 배포하는 방법을 보여줍니다.

압축되지 않은 ML 모델을 배포하려면 모든 모델 아티팩트를 Amazon S3에 업로드하고 공통 Amazon S3 접두사로 구성하세요. Amazon S3 접두사는 Amazon S3 객체 키 이름의 시작 부분에 있는 문자열로, 나머지 이름과 구분 기호로 구분됩니다. Amazon S3 접두사에 대한 자세한 정보는 접두사를 사용한 객체 구성을 참고하세요.

SageMaker AI로 배포하려면 슬래시(/)를 구분 기호로 사용해야 합니다. ML 모델과 관련된 아티팩트만 접두사와 함께 구성되도록 해야 합니다. 압축되지 않은 아티팩트가 한 개 있는 ML 모델의 경우, 접두사는 키 이름과 동일합니다. AWS CLI를 사용하여 접두사와 연결된 객체를 확인할 수 있습니다.

aws s3 ls --recursive s3://bucket/prefix

모델 아티팩트를 Amazon S3에 업로드하고 공통 접두사로 구성한 후, CreateModel 요청을 호출할 때 ModelDataSource 필드의 일부로 해당 위치를 지정할 수 있습니다. SageMaker AI는 추론을 /opt/ml/model 위해 압축되지 않은 모델 아티팩트를에 자동으로 다운로드합니다. SageMaker AI가 아티팩트를 다운로드할 때 사용하는 규칙에 대한 자세한 내용은 S3ModelDataSource를 참조하세요.

다음 코드 스니펫은 압축되지 않은 모델을 배포할 때 CreateModel API를 호출하는 방법을 보여줍니다. 기울임꼴로 표시된 사용자 글자를 사용자의 정보로 바꿉니다.

model_name = "model-name" sagemaker_role = "arn:aws:iam::123456789012:role/SageMakerExecutionRole" container = "123456789012.dkr.ecr.us-west-2.amazonaws.com/inference-image:latest" create_model_response = sagemaker_client.create_model( ModelName = model_name, ExecutionRoleArn = sagemaker_role, PrimaryContainer = { "Image": container, "ModelDataSource": { "S3DataSource": { "S3Uri": "s3://amzn-s3-demo-bucket/prefix/to/model/data/", "S3DataType": "S3Prefix", "CompressionType": "None", }, }, }, )

앞서 언급한 예제에서는 모델 아티팩트가 공통 접두사로 구성되어 있다고 가정합니다. 대신에 모델 아티팩트가 압축되지 않은 단일 Amazon S3 객체인 경우, Amazon S3 객체를 가리키도록 "S3Uri"을 변경하고 "S3DataType""S3Object"로 변경합니다.

참고

현재 SageMaker AI 배치 변환 AWS Marketplace, SageMaker 서버리스 추론 엔드포인트 및 SageMaker 다중 모델 엔드포인트와 ModelDataSource 함께를 사용할 수 없습니다.

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.