Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Konstruieren Sie einen SageMaker XGBoost KI-Schätzer mit der Debugger-Berichtsregel XGBoost

Fokusmodus
Konstruieren Sie einen SageMaker XGBoost KI-Schätzer mit der Debugger-Berichtsregel XGBoost - Amazon SageMaker KI

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die CreateXgboostReport Regel erfasst die folgenden Ausgangstensoren aus Ihrem Trainingsauftrag:

  • hyperparameters – Speichert im ersten Schritt.

  • metrics – Speichert alle 5 Schritte Verlust und Genauigkeit.

  • feature_importance – Speichert alle 5 Schritte.

  • predictions – Speichert alle 5 Schritte.

  • labels – Speichert alle 5 Schritte.

Die Ausgabetensoren werden in einem Standard-S3-Bucket gespeichert. Beispiel, s3://sagemaker-<region>-<12digit_account_id>/<base-job-name>/debug-output/.

Wenn Sie einen SageMaker KI-Schätzer für einen XGBoost Trainingsjob erstellen, geben Sie die Regel wie im folgenden Beispielcode dargestellt an.

Using the SageMaker AI generic estimator
import boto3 import sagemaker from sagemaker.estimator import Estimator from sagemaker import image_uris from sagemaker.debugger import Rule, rule_configs rules=[ Rule.sagemaker(rule_configs.create_xgboost_report()) ] region = boto3.Session().region_name xgboost_container=sagemaker.image_uris.retrieve("xgboost", region, "1.2-1") estimator=Estimator( role=sagemaker.get_execution_role() image_uri=xgboost_container, base_job_name="debugger-xgboost-report-demo", instance_count=1, instance_type="ml.m5.2xlarge", # Add the Debugger XGBoost report rule rules=rules ) estimator.fit(wait=False)
import boto3 import sagemaker from sagemaker.estimator import Estimator from sagemaker import image_uris from sagemaker.debugger import Rule, rule_configs rules=[ Rule.sagemaker(rule_configs.create_xgboost_report()) ] region = boto3.Session().region_name xgboost_container=sagemaker.image_uris.retrieve("xgboost", region, "1.2-1") estimator=Estimator( role=sagemaker.get_execution_role() image_uri=xgboost_container, base_job_name="debugger-xgboost-report-demo", instance_count=1, instance_type="ml.m5.2xlarge", # Add the Debugger XGBoost report rule rules=rules ) estimator.fit(wait=False)
DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.