Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Tutorial zum Erstellen von Modellen mit Notebook-Instances

Fokusmodus
Tutorial zum Erstellen von Modellen mit Notebook-Instances - Amazon SageMaker KI

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

In diesem Tutorial „Erste Schritte“ erfahren Sie, wie Sie eine SageMaker Notebook-Instance erstellen, ein Jupyter-Notebook mit einem vorkonfigurierten Kernel mit der Conda-Umgebung für maschinelles Lernen öffnen und eine SageMaker KI-Sitzung starten, um einen ML-Zyklus auszuführen. end-to-end Sie erfahren, wie Sie einen Datensatz in einem standardmäßigen Amazon S3 S3-Bucket speichern, der automatisch mit der SageMaker KI-Sitzung gepaart wird, einen Trainingsjob eines ML-Modells an Amazon senden und das trainierte Modell für Prognosen bereitstellen EC2, indem Sie es hosten oder Batch-Inferenzen über Amazon EC2 durchführen.

In diesem Tutorial wird explizit ein vollständiger ML-Flow gezeigt, bei dem das XGBoost Modell aus dem in SageMaker KI integrierten Modellpool trainiert wird. Sie verwenden den Datensatz der US-Volkszählung für Erwachsene und bewerten die Leistung des trainierten SageMaker XGBoost KI-Modells bei der Vorhersage des Einkommens von Einzelpersonen.

DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.