Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Anda dapat menggunakan LightGBM sebagai algoritma bawaan Amazon SageMaker AI. Bagian berikut menjelaskan cara menggunakan LightGBM dengan Python SageMaker SDK. Untuk informasi tentang cara menggunakan LightGBM dari Amazon SageMaker Studio Classic UI, lihat. SageMaker JumpStart model terlatih
-
Gunakan LightGBM sebagai algoritma bawaan
Gunakan algoritma bawaan LightGBM untuk membangun wadah pelatihan LightGBM seperti yang ditunjukkan pada contoh kode berikut. Anda dapat secara otomatis melihat URI gambar algoritme bawaan LightGBM menggunakan SageMaker AI
image_uris.retrieve
API (atauget_image_uri
API jika menggunakan Amazon SageMaker Python SDKversi 2). Setelah menentukan URI image LightGBM, Anda dapat menggunakan container LightGBM untuk membuat estimator menggunakan SageMaker AI Estimator API dan memulai pekerjaan pelatihan. Algoritma bawaan LightGBM berjalan dalam mode skrip, tetapi skrip pelatihan disediakan untuk Anda dan tidak perlu menggantinya. Jika Anda memiliki pengalaman luas menggunakan mode skrip untuk membuat pekerjaan SageMaker pelatihan, maka Anda dapat memasukkan skrip pelatihan LightGBM Anda sendiri.
from sagemaker import image_uris, model_uris, script_uris train_model_id, train_model_version, train_scope = "lightgbm-classification-model", "*", "training" training_instance_type = "ml.m5.xlarge" # Retrieve the docker image train_image_uri = image_uris.retrieve( region=None, framework=None, model_id=train_model_id, model_version=train_model_version, image_scope=train_scope, instance_type=training_instance_type ) # Retrieve the training script train_source_uri = script_uris.retrieve( model_id=train_model_id, model_version=train_model_version, script_scope=train_scope ) train_model_uri = model_uris.retrieve( model_id=train_model_id, model_version=train_model_version, model_scope=train_scope ) # Sample training data is available in this bucket training_data_bucket = f"jumpstart-cache-prod-{aws_region}" training_data_prefix = "training-datasets/tabular_multiclass/" training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/train" validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/validation" output_bucket = sess.default_bucket() output_prefix = "jumpstart-example-tabular-training" s3_output_location = f"s3://{output_bucket}/{output_prefix}/output" from sagemaker import hyperparameters # Retrieve the default hyperparameters for training the model hyperparameters = hyperparameters.retrieve_default( model_id=train_model_id, model_version=train_model_version ) # [Optional] Override default hyperparameters with custom values hyperparameters[ "num_boost_round" ] = "500" print(hyperparameters) from sagemaker.estimator import Estimator from sagemaker.utils import name_from_base training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training") # Create SageMaker Estimator instance tabular_estimator = Estimator( role=aws_role, image_uri=train_image_uri, source_dir=train_source_uri, model_uri=train_model_uri, entry_point="transfer_learning.py", instance_count=1, # for distributed training, specify an instance_count greater than 1 instance_type=training_instance_type, max_run=360000, hyperparameters=hyperparameters, output_path=s3_output_location ) # Launch a SageMaker Training job by passing the S3 path of the training data tabular_estimator.fit( { "train": training_dataset_s3_path, "validation": validation_dataset_s3_path, }, logs=True, job_name=training_job_name )
Untuk informasi selengkapnya tentang cara mengatur LightGBM sebagai algoritma bawaan, lihat contoh notebook berikut.