Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Kustomisasi Amazon SageMaker Studio Classic
penting
Pada 30 November 2023, pengalaman Amazon SageMaker Studio sebelumnya sekarang bernama Amazon SageMaker Studio Classic. Bagian berikut khusus untuk menggunakan aplikasi Studio Classic. Untuk informasi tentang menggunakan pengalaman Studio yang diperbarui, lihat SageMaker Studio Amazon.
Ada empat opsi untuk menyesuaikan lingkungan Amazon SageMaker Studio Classic Anda. Anda membawa SageMaker gambar Anda sendiri, menggunakan skrip konfigurasi siklus hidup, melampirkan repo Git yang disarankan ke Studio Classic, atau membuat kernel menggunakan lingkungan Conda persisten di Amazon. EFS Gunakan setiap opsi secara individual, atau bersama-sama.
-
Bawa SageMaker gambar Anda sendiri: SageMaker Gambar adalah file yang mengidentifikasi kernel, paket bahasa, dan dependensi lain yang diperlukan untuk menjalankan notebook Jupyter di Amazon Studio Classic. SageMaker Amazon SageMaker menyediakan banyak gambar bawaan untuk Anda gunakan. Jika Anda memerlukan fungsionalitas yang berbeda, Anda dapat membawa gambar kustom Anda sendiri ke Studio Classic.
-
Gunakan konfigurasi siklus hidup dengan Amazon SageMaker Studio Classic: Konfigurasi siklus hidup adalah skrip shell yang dipicu oleh peristiwa siklus hidup Amazon SageMaker Studio Classic, seperti memulai notebook Studio Classic baru. Anda dapat menggunakan konfigurasi siklus hidup untuk mengotomatiskan penyesuaian lingkungan Studio Classic Anda. Misalnya, Anda dapat menginstal paket kustom, mengkonfigurasi ekstensi notebook, preload dataset, dan mengatur repositori kode sumber.
-
Lampirkan repo Git yang disarankan ke Studio Classic: Anda dapat melampirkan repositori Git yang disarankan URLs di SageMaker domain Amazon atau tingkat profil pengguna. Kemudian, Anda dapat memilih repo URL dari daftar saran dan mengkloningnya ke lingkungan Anda menggunakan ekstensi Git di Studio Classic.
-
Pertahankan lingkungan Conda ke EFS volume Amazon Studio Classic: Studio Classic menggunakan EFS volume Amazon sebagai lapisan penyimpanan persisten. Anda dapat menyimpan lingkungan Conda Anda di EFS volume Amazon ini, lalu menggunakan lingkungan yang disimpan untuk membuat kernel. Studio Classic secara otomatis mengambil semua lingkungan valid yang disimpan di Amazon EFS sebagai KernelGateway kernel. Kernel ini bertahan melalui restart kernel, aplikasi, dan Studio Classic. Untuk informasi selengkapnya, lihat lingkungan Persist Conda ke bagian EFS volume Studio Classic dalam Empat pendekatan untuk mengelola paket Python di notebook Amazon SageMaker
Studio Classic.
Topik berikut menunjukkan cara menggunakan tiga opsi ini untuk menyesuaikan lingkungan Amazon SageMaker Studio Classic Anda.