Seleziona le tue preferenze relative ai cookie

Utilizziamo cookie essenziali e strumenti simili necessari per fornire il nostro sito e i nostri servizi. Utilizziamo i cookie prestazionali per raccogliere statistiche anonime in modo da poter capire come i clienti utilizzano il nostro sito e apportare miglioramenti. I cookie essenziali non possono essere disattivati, ma puoi fare clic su \"Personalizza\" o \"Rifiuta\" per rifiutare i cookie prestazionali.

Se sei d'accordo, AWS e le terze parti approvate utilizzeranno i cookie anche per fornire utili funzionalità del sito, ricordare le tue preferenze e visualizzare contenuti pertinenti, inclusa la pubblicità pertinente. Per continuare senza accettare questi cookie, fai clic su \"Continua\" o \"Rifiuta\". Per effettuare scelte più dettagliate o saperne di più, fai clic su \"Personalizza\".

Invocazione del tuo endpoint

Modalità Focus
Invocazione del tuo endpoint - Amazon SageMaker AI

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Nota

Ti consigliamo di testare la distribuzione del modello in Amazon SageMaker Canvas prima di richiamare un endpoint SageMaker AI a livello di programmazione.

Puoi utilizzare i modelli Amazon SageMaker Canvas che hai distribuito su un endpoint di SageMaker intelligenza artificiale in produzione con le tue applicazioni. Richiama l'endpoint a livello di codice nello stesso modo in cui richiami qualsiasi altro endpoint AI in tempo reale. SageMaker L'invocazione di un endpoint restituisce a livello di codice un oggetto di risposta che contiene gli stessi campi descritti in. Test della distribuzione

Per informazioni più dettagliate su come invocare gli endpoint in modo programmatico, consulta Richiama modelli per l'inferenza in tempo reale.

I seguenti esempi in Python mostrano come invocare l'endpoint in base al tipo di modello.

L'esempio seguente mostra come richiamare un modello di JumpStart base che hai distribuito su un endpoint.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame( [['feature_column1', 'feature_column2'], ['feature_column1', 'feature_column2']] ).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

JumpStart modelli di base

L'esempio seguente mostra come richiamare un modello di JumpStart base che hai distribuito su un endpoint.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame( [['feature_column1', 'feature_column2'], ['feature_column1', 'feature_column2']] ).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

L'esempio seguente mostra come invocare modelli di previsione numerici o categoriali.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame(['feature_column1', 'feature_column2'], ['feature_column1', 'feature_column2']).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

L'esempio seguente mostra come invocare modelli di previsione numerici o categoriali.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame(['feature_column1', 'feature_column2'], ['feature_column1', 'feature_column2']).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

L'esempio seguente mostra come richiamare modelli di previsione delle serie temporali. Per un esempio completo di come testare e richiamare un modello di previsione di serie temporali, consulta Time-Series Forecasting with Amazon Autopilot. SageMaker

import boto3 import pandas as pd csv_path = './real-time-payload.csv' data = pd.read_csv(csv_path) client = boto3.client("runtime.sagemaker") body = data.to_csv(index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

L'esempio seguente mostra come richiamare modelli di previsione delle serie temporali. Per un esempio completo di come testare e richiamare un modello di previsione di serie temporali, consulta Time-Series Forecasting with Amazon Autopilot. SageMaker

import boto3 import pandas as pd csv_path = './real-time-payload.csv' data = pd.read_csv(csv_path) client = boto3.client("runtime.sagemaker") body = data.to_csv(index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

L'esempio seguente mostra come invocare modelli di previsione di immagini.

import boto3 client = boto3.client("runtime.sagemaker") with open("example_image.jpg", "rb") as file: body = file.read() response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="application/x-image", Body=body, Accept="application/json" )

L'esempio seguente mostra come invocare modelli di previsione di immagini.

import boto3 client = boto3.client("runtime.sagemaker") with open("example_image.jpg", "rb") as file: body = file.read() response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="application/x-image", Body=body, Accept="application/json" )

L'esempio seguente mostra come invocare modelli di previsione di testo.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame([["Example text 1"], ["Example text 2"]]).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

L'esempio seguente mostra come invocare modelli di previsione di testo.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame([["Example text 1"], ["Example text 2"]]).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )
PrivacyCondizioni del sitoPreferenze cookie
© 2025, Amazon Web Services, Inc. o società affiliate. Tutti i diritti riservati.