Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Schede SageMaker modello Amazon
Importante
Amazon SageMaker Model Card è integrata con SageMaker Model Registry. Se stai registrando un modello all'interno di Model Registry, puoi utilizzare l'integrazione per aggiungere informazioni di controllo. Per ulteriori informazioni, consulta Aggiorna i dettagli di una versione del modello.
Usa Amazon SageMaker Model Cards per documentare dettagli critici sui tuoi modelli di machine learning (ML) in un unico posto per una governance e un reporting semplificati. Le schede modello possono aiutarti a acquisire informazioni chiave sui tuoi modelli durante tutto il loro ciclo di vita e a implementare pratiche di intelligenza artificiale responsabili.
Avrai accesso a dettagli del catalogo, come l'uso previsto e la valutazione del rischio di un modello, dettagli e metriche di addestramento, risultati e osservazioni della valutazione e richiami aggiuntivi come considerazioni, consigli e informazioni personalizzate. Creando schede modello, puoi eseguire le operazioni seguenti:
-
Fornire indicazioni su come utilizzare un modello.
-
Supportare le attività di audit con descrizioni dettagliate dell’addestramento e delle prestazioni dei modelli.
-
Comunicare in che modo un modello è destinato a supportare gli obiettivi aziendali.
Le schede modello forniscono indicazioni prescrittive sulle informazioni da documentare e includono campi per informazioni personalizzate. Dopo aver creato una scheda modello, puoi esportarla PDF o scaricarla per condividerla con le parti interessate. Qualsiasi modifica diversa dall'aggiornamento dello stato di approvazione apportata a una scheda modello comporta versioni aggiuntive della scheda modello, in modo da avere un registro immutabile delle modifiche al modello.
Argomenti
Prerequisiti
Per iniziare a usare Amazon SageMaker Model Card, devi avere l'autorizzazione a creare, modificare, visualizzare ed esportare le schede modello.
Usi previsti di un modello
Specificare gli usi previsti di un modello aiuta a garantire che gli sviluppatori e gli utenti del modello dispongano delle informazioni necessarie per addestrare o implementare il modello in modo responsabile. Gli usi previsti di un modello dovrebbero descrivere gli scenari in cui il modello è appropriato e gli scenari in cui è sconsigliato l'uso del modello.
Consigliamo di includere:
-
Lo scopo generale del modello
-
Casi d'uso per i quali è stato progettato il modello
-
Casi d'uso per i quali non è stato progettato il modello
-
Ipotesi formulate durante lo sviluppo del modello
Gli usi previsti di un modello vanno oltre i dettagli tecnici e descrivono come un modello dovrebbe essere utilizzato nella produzione, gli scenari in cui è appropriato utilizzare un modello e considerazioni aggiuntive come il tipo di dati da utilizzare con il modello o eventuali ipotesi formulate durante lo sviluppo.
Valutazioni del rischio
Gli sviluppatori creano modelli di machine learning per casi d'uso con diversi livelli di rischio. Ad esempio, un modello che approva le richieste di prestito potrebbe essere un modello a rischio più elevato rispetto a uno che rileva la categoria di un'e-mail. Dati i diversi profili di rischio di un modello, le schede modello forniscono un campo in cui classificare la valutazione del rischio di un modello.
Questa classificazione del rischio può corrispondere a unknown
, low
, medium
o high
. Utilizza questi campi di valutazione del rischio per etichettare modelli sconosciuti, a basso, medio o alto rischio e aiuta la tua organizzazione a rispettare le regole esistenti sulla messa in produzione di determinati modelli.
JSONSchema della scheda modello
I dettagli di valutazione di un modello di scheda devono essere forniti in JSON formato. Se disponi di report di valutazione del JSON formato esistenti generati da SageMaker Clarify o SageMaker AI Model Monitor, caricali su Amazon S3 e fornisci un URI S3 per analizzare automaticamente i parametri di valutazione. Per ulteriori informazioni e report di esempio, consulta la cartella Example Metrics nel notebook di esempio
Quando si crea una scheda modello utilizzando SageMaker PythonSDK, il contenuto del modello deve essere nello JSON schema della scheda modello e fornito come stringa. Fornisci un modello di contenuto simile all'esempio seguente.
{ "$schema": "http://json-schema.org/draft-07/schema#", "$id": "http://json-schema.org/draft-07/schema#", "title": "SageMakerModelCardSchema", "description": "Internal model card schema for SageMakerRepositoryService without model_package_details", "version": "0.1.0", "type": "object", "additionalProperties": false, "properties": { "model_overview": { "description": "Overview about the model", "type": "object", "additionalProperties": false, "properties": { "model_description": { "description": "description of model", "type": "string", "maxLength": 1024 }, "model_creator": { "description": "Creator of model", "type": "string", "maxLength": 1024 }, "model_artifact": { "description": "Location of the model artifact", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } }, "algorithm_type": { "description": "Algorithm used to solve the problem", "type": "string", "maxLength": 1024 }, "problem_type": { "description": "Problem being solved with the model", "type": "string" }, "model_owner": { "description": "Owner of model", "type": "string", "maxLength": 1024 } } }, "intended_uses": { "description": "Intended usage of model", "type": "object", "additionalProperties": false, "properties": { "purpose_of_model": { "description": "Why the model was developed?", "type": "string", "maxLength": 2048 }, "intended_uses": { "description": "intended use cases", "type": "string", "maxLength": 2048 }, "factors_affecting_model_efficiency": { "type": "string", "maxLength": 2048 }, "risk_rating": { "description": "Risk rating for model card", "$ref": "#/definitions/risk_rating" }, "explanations_for_risk_rating": { "type": "string", "maxLength": 2048 } } }, "business_details": { "description": "Business details of model", "type": "object", "additionalProperties": false, "properties": { "business_problem": { "description": "What business problem does the model solve?", "type": "string", "maxLength": 2048 }, "business_stakeholders": { "description": "Business stakeholders", "type": "string", "maxLength": 2048 }, "line_of_business": { "type": "string", "maxLength": 2048 } } }, "training_details": { "description": "Overview about the training", "type": "object", "additionalProperties": false, "properties": { "objective_function": { "description": "the objective function the model will optimize for", "function": { "$ref": "#/definitions/objective_function" }, "notes": { "type": "string", "maxLength": 1024 } }, "training_observations": { "type": "string", "maxLength": 1024 }, "training_job_details": { "type": "object", "additionalProperties": false, "properties": { "training_arn": { "description": "SageMaker Training job arn", "type": "string", "maxLength": 1024 }, "training_datasets": { "description": "Location of the model datasets", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } }, "training_environment": { "type": "object", "additionalProperties": false, "properties": { "container_image": { "description": "SageMaker training image uri", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } } } }, "training_metrics": { "type": "array", "items": { "maxItems": 50, "$ref": "#/definitions/training_metric" } }, "user_provided_training_metrics": { "type": "array", "items": { "maxItems": 50, "$ref": "#/definitions/training_metric" } }, "hyper_parameters": { "type": "array", "items": { "maxItems": 100, "$ref": "#/definitions/training_hyper_parameter" } }, "user_provided_hyper_parameters": { "type": "array", "items": { "maxItems": 100, "$ref": "#/definitions/training_hyper_parameter" } } } } } }, "evaluation_details": { "type": "array", "default": [], "items": { "type": "object", "required": [ "name" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,63}" }, "evaluation_observation": { "type": "string", "maxLength": 2096 }, "evaluation_job_arn": { "type": "string", "maxLength": 256 }, "datasets": { "type": "array", "items": { "type": "string", "maxLength": 1024 }, "maxItems": 10 }, "metadata": { "description": "additional attributes associated with the evaluation results", "type": "object", "additionalProperties": { "type": "string", "maxLength": 1024 } }, "metric_groups": { "type": "array", "default": [], "items": { "type": "object", "required": [ "name", "metric_data" ], "properties": { "name": { "type": "string", "pattern": ".{1,63}" }, "metric_data": { "type": "array", "items": { "anyOf": [ { "$ref": "#/definitions/simple_metric" }, { "$ref": "#/definitions/linear_graph_metric" }, { "$ref": "#/definitions/bar_chart_metric" }, { "$ref": "#/definitions/matrix_metric" } ] } } } } } } } }, "additional_information": { "additionalProperties": false, "type": "object", "properties": { "ethical_considerations": { "description": "Any ethical considerations that the author wants to provide", "type": "string", "maxLength": 2048 }, "caveats_and_recommendations": { "description": "Caveats and recommendations for people who might use this model in their applications.", "type": "string", "maxLength": 2048 }, "custom_details": { "type": "object", "additionalProperties": { "$ref": "#/definitions/custom_property" } } } } }, "definitions": { "source_algorithms": { "type": "array", "minContains": 1, "maxContains": 1, "items": { "type": "object", "additionalProperties": false, "required": [ "algorithm_name" ], "properties": { "algorithm_name": { "description": "The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.", "type": "string", "maxLength": 170 }, "model_data_url": { "description": "The Amazon S3 path where the model artifacts, which result from model training, are stored.", "type": "string", "maxLength": 1024 } } } }, "inference_specification": { "type": "object", "additionalProperties": false, "required": [ "containers" ], "properties": { "containers": { "description": "Contains inference related information which were used to create model package.", "type": "array", "minContains": 1, "maxContains": 15, "items": { "type": "object", "additionalProperties": false, "required": [ "image" ], "properties": { "model_data_url": { "description": "The Amazon S3 path where the model artifacts, which result from model training, are stored.", "type": "string", "maxLength": 1024 }, "image": { "description": "Inference environment path. The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.", "type": "string", "maxLength": 255 }, "nearest_model_name": { "description": "The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model.", "type": "string" } } } } } }, "risk_rating": { "description": "Risk rating of model", "type": "string", "enum": [ "High", "Medium", "Low", "Unknown" ] }, "custom_property": { "description": "Additional property in section", "type": "string", "maxLength": 1024 }, "objective_function": { "description": "objective function that training job is optimized for", "additionalProperties": false, "properties": { "function": { "type": "string", "enum": [ "Maximize", "Minimize" ] }, "facet": { "type": "string", "maxLength": 63 }, "condition": { "type": "string", "maxLength": 63 } } }, "training_metric": { "description": "training metric data", "type": "object", "required": [ "name", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "value": { "type": "number" } } }, "training_hyper_parameter": { "description": "training hyper parameter", "type": "object", "required": [ "name" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "value": { "type": "string", "pattern": ".{0,255}" } } }, "linear_graph_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "linear_graph" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "array", "items": { "type": "number" }, "minItems": 2, "maxItems": 2 }, "minItems": 1 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_string" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "bar_chart_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "bar_chart" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "number" }, "minItems": 1 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_array" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "matrix_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "matrix" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "array", "items": { "type": "number" }, "minItems": 1, "maxItems": 20 }, "minItems": 1, "maxItems": 20 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_array" }, "y_axis_name": { "$ref": "#/definitions/axis_name_array" } } }, "simple_metric": { "description": "metric data", "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "number", "string", "boolean" ] }, "value": { "anyOf": [ { "type": "number" }, { "type": "string", "maxLength": 63 }, { "type": "boolean" } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_string" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "axis_name_array": { "type": "array", "items": { "type": "string", "maxLength": 63 } }, "axis_name_string": { "type": "string", "maxLength": 63 } } }