Seleziona le tue preferenze relative ai cookie

Utilizziamo cookie essenziali e strumenti simili necessari per fornire il nostro sito e i nostri servizi. Utilizziamo i cookie prestazionali per raccogliere statistiche anonime in modo da poter capire come i clienti utilizzano il nostro sito e apportare miglioramenti. I cookie essenziali non possono essere disattivati, ma puoi fare clic su \"Personalizza\" o \"Rifiuta\" per rifiutare i cookie prestazionali.

Se sei d'accordo, AWS e le terze parti approvate utilizzeranno i cookie anche per fornire utili funzionalità del sito, ricordare le tue preferenze e visualizzare contenuti pertinenti, inclusa la pubblicità pertinente. Per continuare senza accettare questi cookie, fai clic su \"Continua\" o \"Rifiuta\". Per effettuare scelte più dettagliate o saperne di più, fai clic su \"Personalizza\".

Crea un Job di osservazione della Terra utilizzando un notebook Amazon SageMaker Studio Classic con un'immagine SageMaker geospaziale

Modalità Focus
Crea un Job di osservazione della Terra utilizzando un notebook Amazon SageMaker Studio Classic con un'immagine SageMaker geospaziale - Amazon SageMaker AI

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Per utilizzare un notebook SageMaker Studio Classic con un'immagine geospaziale SageMaker :

  1. Dall’utilità di avvio, scegli Modifica ambiente in Notebook e risorse di calcolo.

  2. Viene quindi visualizzata la finestra di dialogo Modifica ambiente.

  3. Scegli il menu a discesa Immagine e seleziona Geospatial 1.0. Il tipo di istanza deve essere ml.geospatial.interactive. Non modificare i valori predefiniti delle altre impostazioni.

  4. Scegli Seleziona.

  5. Seleziona Crea notebook.

Puoi avviare un EOJ utilizzando un notebook Amazon SageMaker Studio Classic con un'immagine SageMaker geospaziale utilizzando il codice fornito di seguito.

import boto3 import sagemaker import sagemaker_geospatial_map session = boto3.Session() execution_role = sagemaker.get_execution_role() sg_client = session.client(service_name="sagemaker-geospatial")

Nell'esempio seguente viene illustrato come creare un processo EOJ nella Regione Stati Uniti occidentali (Oregon).

#Query and Access Data search_rdc_args = { "Arn": "arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/public/nmqj48dcu3g7ayw8", # sentinel-2 L2A COG "RasterDataCollectionQuery": { "AreaOfInterest": { "AreaOfInterestGeometry": { "PolygonGeometry": { "Coordinates": [ [ [-114.529, 36.142], [-114.373, 36.142], [-114.373, 36.411], [-114.529, 36.411], [-114.529, 36.142], ] ] } } }, "TimeRangeFilter": { "StartTime": "2021-01-01T00:00:00Z", "EndTime": "2022-07-10T23:59:59Z", }, "PropertyFilters": { "Properties": [{"Property": {"EoCloudCover": {"LowerBound": 0, "UpperBound": 1}}}], "LogicalOperator": "AND", }, "BandFilter": ["visual"], }, } tci_urls = [] data_manifests = [] while search_rdc_args.get("NextToken", True): search_result = sg_client.search_raster_data_collection(**search_rdc_args) if search_result.get("NextToken"): data_manifests.append(search_result) for item in search_result["Items"]: tci_url = item["Assets"]["visual"]["Href"] print(tci_url) tci_urls.append(tci_url) search_rdc_args["NextToken"] = search_result.get("NextToken") # Perform land cover segmentation on images returned from the sentinel dataset. eoj_input_config = { "RasterDataCollectionQuery": { "RasterDataCollectionArn": "arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/public/nmqj48dcu3g7ayw8", "AreaOfInterest": { "AreaOfInterestGeometry": { "PolygonGeometry": { "Coordinates": [ [ [-114.529, 36.142], [-114.373, 36.142], [-114.373, 36.411], [-114.529, 36.411], [-114.529, 36.142], ] ] } } }, "TimeRangeFilter": { "StartTime": "2021-01-01T00:00:00Z", "EndTime": "2022-07-10T23:59:59Z", }, "PropertyFilters": { "Properties": [{"Property": {"EoCloudCover": {"LowerBound": 0, "UpperBound": 1}}}], "LogicalOperator": "AND", }, } } eoj_config = {"LandCoverSegmentationConfig": {}} response = sg_client.start_earth_observation_job( Name="lake-mead-landcover", InputConfig=eoj_input_config, JobConfig=eoj_config, ExecutionRoleArn=execution_role, )

Una volta creato il processo EOJ, viene restituito l’Arn. Puoi utilizzare l’Arn per identificare un processo ed eseguire ulteriori operazioni. Per conoscere lo stato di un processo, puoi eseguire sg_client.get_earth_observation_job(Arn = response['Arn']).

L'esempio seguente mostra come eseguire query allo stato di un processo EOJ fino al suo completamento.

eoj_arn = response["Arn"] job_details = sg_client.get_earth_observation_job(Arn=eoj_arn) {k: v for k, v in job_details.items() if k in ["Arn", "Status", "DurationInSeconds"]} # List all jobs in the account sg_client.list_earth_observation_jobs()["EarthObservationJobSummaries"]

Una volta completato il processo EOJ, puoi visualizzare gli output EOJ direttamente nel notebook. L'esempio seguente mostra come eseguire il rendering di una mappa interattiva.

map = sagemaker_geospatial_map.create_map({ 'is_raster': True }) map.set_sagemaker_geospatial_client(sg_client) # render the map map.render()

L'esempio seguente mostra come la mappa può essere centrata su un'area di interesse e come l'input e l'output del processo EOJ possono essere renderizzati come livelli separati all'interno della mappa.

# visualize the area of interest config = {"label": "Lake Mead AOI"} aoi_layer = map.visualize_eoj_aoi(Arn=eoj_arn, config=config) # Visualize input. time_range_filter = { "start_date": "2022-07-01T00:00:00Z", "end_date": "2022-07-10T23:59:59Z", } config = {"label": "Input"} input_layer = map.visualize_eoj_input( Arn=eoj_arn, config=config, time_range_filter=time_range_filter ) # Visualize output, EOJ needs to be in completed status. time_range_filter = { "start_date": "2022-07-01T00:00:00Z", "end_date": "2022-07-10T23:59:59Z", } config = {"preset": "singleBand", "band_name": "mask"} output_layer = map.visualize_eoj_output( Arn=eoj_arn, config=config, time_range_filter=time_range_filter )

Puoi utilizzare la funzione export_earth_observation_job per esportare i risultati del processo EOJ nel tuo bucket Amazon S3. La funzione di esportazione semplifica la condivisione dei risultati tra i team. SageMaker L'intelligenza artificiale semplifica anche la gestione dei set di dati. Puoi condividere facilmente i risultati del processo EOJ utilizzando l’ARN del processo, anziché eseguire il crawling di migliaia di file nel bucket S3. Ogni processo EOJ diventa un asset nel catalogo di dati, poiché i risultati possono essere raggruppati in base all’ARN del processo. Nell'esempio seguente viene mostrato come esportare i risultati di un processo EOJ.

sagemaker_session = sagemaker.Session() s3_bucket_name = sagemaker_session.default_bucket() # Replace with your own bucket if needed s3_bucket = session.resource("s3").Bucket(s3_bucket_name) prefix = "eoj_lakemead" # Replace with the S3 prefix desired export_bucket_and_key = f"s3://{s3_bucket_name}/{prefix}/" eoj_output_config = {"S3Data": {"S3Uri": export_bucket_and_key}} export_response = sg_client.export_earth_observation_job( Arn=eoj_arn, ExecutionRoleArn=execution_role, OutputConfig=eoj_output_config, ExportSourceImages=False, )

Puoi monitorare lo stato del processo di esportazione utilizzando il seguente snippet.

# Monitor the export job status export_job_details = sg_client.get_earth_observation_job(Arn=export_response["Arn"]) {k: v for k, v in export_job_details.items() if k in ["Arn", "Status", "DurationInSeconds"]}

Non ti vengono addebitati costi di archiviazione dopo aver eliminato il processo EOJ.

Per un esempio che mostra come eseguire un processo EOJ, consulta questo post del blog.

Per altri esempi di notebook sulle funzionalità SageMaker geospaziali, consulta questo repository. GitHub

PrivacyCondizioni del sitoPreferenze cookie
© 2025, Amazon Web Services, Inc. o società affiliate. Tutti i diritti riservati.