Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Implementa il modello su Amazon EC2
Per ottenere previsioni, distribuisci il tuo modello su Amazon utilizzando EC2 Amazon. SageMaker
Argomenti
Implementa il modello nei servizi di hosting SageMaker
Per ospitare un modello tramite Amazon EC2 utilizzando Amazon SageMaker, distribuisci il modello su cui hai effettuato la formazione Creazione ed esecuzione di un processo di addestramento chiamando il deploy
metodo dello xgb_model
estimatore. Quando chiami il deploy
metodo, devi specificare il numero e il tipo di istanze EC2 ML che desideri utilizzare per ospitare un endpoint.
import sagemaker from sagemaker.serializers import CSVSerializer xgb_predictor=xgb_model.deploy( initial_instance_count=1, instance_type='ml.t2.medium', serializer=CSVSerializer() )
-
initial_instance_count
(int): il numero di istanze per distribuire il modello. -
instance_type
(str): il tipo di istanze che desideri per utilizzare il modello distribuito. -
serializer
(int) — Serializza i dati di input di vari formati (un NumPy array, un elenco, un file o un buffer) in una stringa in formato. CSV Lo usiamo perché l'XGBoostalgoritmo accetta i file di input in formato. CSV
Il deploy
metodo crea un modello implementabile, configura l'endpoint dei servizi SageMaker di hosting e avvia l'endpoint per ospitare il modello. Per ulteriori informazioni, consulta il metodo SageMaker generico della classe deploy di Estimatordeploy
, esegui il seguente codice:
xgb_predictor.endpoint_name
Questo dovrebbe restituire il nome dell'endpoint di xgb_predictor
. Il formato del nome dell'endpoint è "sagemaker-xgboost-YYYY-MM-DD-HH-MM-SS-SSS"
. Questo endpoint rimane attivo nell'istanza ML e puoi effettuare previsioni istantanee in qualsiasi momento, a meno che non lo arresti in un secondo momento. Copia il nome di questo endpoint e salvalo per riutilizzarlo ed effettuare previsioni in tempo reale altrove nelle istanze Studio o notebook. SageMaker SageMaker
Suggerimento
Per ulteriori informazioni sulla compilazione e l'ottimizzazione del modello per la distribuzione su EC2 istanze Amazon o dispositivi edge, consulta Compile and Deploy Models with Neo.
(Facoltativo) Usa SageMaker Predictor per riutilizzare l'endpoint ospitato
Dopo aver distribuito il modello su un endpoint, puoi configurare un nuovo SageMaker predittore associando l'endpoint ed effettuare continuamente previsioni in tempo reale su qualsiasi altro notebook. Il codice di esempio seguente mostra come utilizzare la classe SageMaker Predictor per configurare un nuovo oggetto predittore utilizzando lo stesso endpoint. Riutilizza il nome dell'endpoint che hai usato per xgb_predictor
.
import sagemaker xgb_predictor_reuse=sagemaker.predictor.Predictor( endpoint_name="
sagemaker-xgboost-YYYY-MM-DD-HH-MM-SS-SSS
", sagemaker_session=sagemaker.Session(), serializer=sagemaker.serializers.CSVSerializer() )
Il predittore xgb_predictor_reuse
si comporta esattamente come xgb_predictor
originale. Per ulteriori informazioni, consulta la classe SageMaker Predictor
(Facoltativo) Formulazione di previsioni con la trasformazione di batch
Invece di ospitare un endpoint in produzione, puoi eseguire un processo di inferenza in batch una tantum per fare previsioni su un set di dati di test utilizzando la trasformazione batch. SageMaker Una volta completata la formazione del modello, potete estendere lo estimatore a un transformer
oggetto, basato sulla classe Transformer. SageMaker
Per creare un processo di trasformazione di batch
Esegui il codice seguente per convertire le colonne delle funzionalità del set di dati di test in un CSV file e caricarle nel bucket S3:
X_test.to_csv('test.csv', index=False, header=False) boto3.Session().resource('s3').Bucket(bucket).Object( os.path.join(prefix, 'test/test.csv')).upload_file('test.csv')
Specificate il bucket S3 URIs di input e output per il processo di trasformazione batch come illustrato di seguito:
# The location of the test dataset batch_input = 's3://{}/{}/test'.format(bucket, prefix) # The location to store the results of the batch transform job batch_output = 's3://{}/{}/batch-prediction'.format(bucket, prefix)
Crea un oggetto trasformatore specificando il numero minimo di parametri: i parametri
instance_count
einstance_type
per eseguire il processo di trasformazione di batch eoutput_path
per salvare i dati di previsione, come mostrato di seguito:transformer = xgb_model.transformer( instance_count=1, instance_type='ml.m4.xlarge', output_path=batch_output )
Avvia il processo di trasformazione di batch eseguendo il metodo
transform()
dell'oggettotransformer
come mostrato di seguito:transformer.transform( data=batch_input, data_type='S3Prefix', content_type='text/csv', split_type='Line' ) transformer.wait()
Quando il processo di trasformazione batch è completo, SageMaker crea i dati di
test.csv.out
previsione salvati nelbatch_output
percorso, che deve avere il seguente formato:.s3://sagemaker-<region>-111122223333/demo-sagemaker-xgboost-adult-income-prediction/batch-prediction
Esegui quanto segue AWS CLI per scaricare i dati di output del processo di trasformazione batch:! aws s3 cp {batch_output} ./ --recursive
Ciò dovrebbe creare il file
test.csv.out
nella directory di lavoro corrente. Sarete in grado di visualizzare i valori float previsti in base alla regressione logistica del processo di formazione. XGBoost